
LEVERAGING ANATOMICAL CONSTRAINTS FOR PNEUMOTHORAX SEGMENTATION

Han Yuan1, Chuan Hong2, Nguyen Tuan Anh Tran3, Xinxing Xu4, Nan Liu1,5

1Duke-NUS Medical School 2Duke University 3Singapore General Hospital 4A*STAR 5SingHealth AI Office

LEVERAGING ANATOMICAL CONSTRAINTS FOR PNEUMOTHORAX SEGMENTATION

Han Yuan1, Chuan Hong2, Nguyen Tuan Anh Tran3, Xinxing Xu4, Nan Liu1,5

1Duke-NUS Medical School 2Duke University 3Singapore General Hospital 4A*STAR 5SingHealth AI Office

Introduction

Pneumothorax is a critical thoracic condition result-
ing from the abnormal accumulation of air in the
pleural space between the lungs and chest wall. On
2D chest radiographs, pneumothorax occurs within
the thoracic cavity and outside of the mediastinum
and we refer to this area as "lung+ space".

Deep learning (DL) has increasingly been utilized
to segment pneumothorax lesions from radiographs
in an end-to-end approach and neglects that pneu-
mothorax is inherently location-sensitive.

Model Overview

The proposed pipeline contains three indispens-
able phases to obtain sample-specific lung+ space,
select well-behaved lung+ space, and implement
constrained training of pneumothorax segmenter.

Figure 1: Diagram of the proposed method

Phase 1: Constraint Generation

In Phase 1, we develop an auxiliary lung seg-
menter using public lung segmentation datasets.
Then it is integrated with morphological opera-
tions, including connected component cutoff, clos-
ing, and dilation to derive a lung+ space segmenter.

This refined segmenter is subsequently deployed on
the target dataset of pneumothorax segmentation to
predict lung+ space.

Figure 2: Pipeline of the constraint generation

Phase 2: Constraint Selection

In Phase 2, we introduce a lung+ space discrimina-
tor, crafted using the training and validation dataset
for the pneumothorax segmentation, filtering out in-
accurately predicted lung+ spaces from Phase 1, en-
suring only high-quality constraints are retained.

Phase 3: Constrained Training

In Phase 3, with the selected lung+ space from
Phase 2, we proceed to train the pneumothorax seg-
menter using a constrained approach.

Specifically, in a typical training stage of a single dis-
ease segmenter, we consider a dataset D consisting
of N input images Ii and their respective lesion seg-
mentations Si. Model Y is trained by minimizing the
overall loss L averaging sample-wise loss l such as
Dice or cross-entropy between the model output Y (Ii)
and the ground-truth mask Si.

l(Y (Ii), Si)

Here the disease occurrence area is introduced as
a penalty in the loss function to guide the model’s
focus on the disease occurrence area.

Specifically, the loss function will be supplemented
with a novel penalty term P comparing the model out-
put Y (Ii) with a sample-specific constraint Ci:

l(Y (Ii), Si) + λ ∗ P (Y (Ii), Ci)

λ is a positive hyper-parameter, and P (Y (Ii), Ci) de-
notes the proposed penalty term:

1− |Y (Ii)
⋂
Ci|/|Y (Ii)|

Implementation Details

We implemented the experiments on a Dell Precision
7920 Workstation with an Intel Xeon Silver 4210 CPU
and an NVIDIA GeForce RTX 2080 Super GPU.

Table 1: Default experimental details
Phase Hyper-parameter Candidate

1 Architecture U-Net
Backbone VGG-11

Loss function Dice loss
Optimizer SGD

2 Backbone VGG-11
Loss function Cross entropy

Optimizer SGD
3 Architecture U-Net, LinkNet, PSPNet

Backbone VGG-11
Loss function Dice loss

Optimizer SGD

Quantitative Results

We quantitatively compared the constrained and
the baseline segmentation performance across dif-
ferent combinations of architectures and back-
bones. The constrained version consistently out-
performed the baseline method.

Table 2: Internal segmenter evaluation
Architectures Methods IoU DSC

Baseline 0.316 0.441
U-Net Ours 0.336 0.461

Improvement 6.3% 4.5%
Baseline 0.305 0.426

LinkNet Ours 0.322 0.447
Improvement 5.6% 4.9%

Baseline 0.302 0.424
PSPNet Ours 0.307 0.429

Improvement 1.7% 1.2%

To evaluate the generalization ability, we further de-
ployed the constrained and the baseline segmenter
on an external dataset without fine-tuning.

Table 3: External segmenter evaluation
Architectures Methods IoU DSC

Baseline 0.269 0.384
U-Net Ours 0.298 0.416

Improvement 10.8% 8.3%
Baseline 0.270 0.386

LinkNet Ours 0.270 0.382
Improvement 0.0% -1.0%

Baseline 0.245 0.355
PSPNet Ours 0.262 0.376

Improvement 6.9% 5.9%

Qualitative Results

We provided a comparative visualization of pneu-
mothorax segmentation between the constrained
and baseline segmenters using the architecture of
U-Net and the backbone of VGG-11.

Figure 3: Comparative examples
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