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Approximate Policy Iteration With Deep Minimax
Average Bellman Error Minimization

Lican Kang, Yuhui Liu , Yuan Luo, Jerry Zhijian Yang , Han Yuan , and Chang Zhu

Abstract— In this work, we investigate the utilization of deep
approximate policy iteration (DAPI) in estimating the optimal
action-value function Q∗ within the context of reinforcement
learning, employing rectified linear unit (ReLU) ResNet as the
underlying framework. The iterative process of DAPI incorpo-
rates the minimax average Bellman error minimization principle.
It employs ReLU ResNet to estimate the fixed point of the
Bellman equation, which is aligned with the estimated greedy
policy. Through error propagation, we derive nonasymptotic
error bounds between Q∗ and the estimated Q function induced
by the output greedy policy in DAPI. To effectively control
the Bellman residual error, we address both the statistical and
approximation errors associated with the α-mixing dependent
data derived from Markov decision processes, using the tech-
niques of empirical process and deep approximation theory,
respectively. Furthermore, we present a novel generalization
bound for ReLU ResNet in the presence of dependent data,
as well as an approximation bound for ReLU ResNet within
the Hölder class. Notably, this approximation bound contributes
to a significant improvement in the dependence on the ambient
dimension, transitioning from an exponential relationship to
a polynomial one. The derived nonasymptotic error bounds
explicitly depend on factors such as the sample size, the ambient
dimension (in polynomial terms), and the width and depth of the
neural networks. Consequently, these bounds serve as valuable
theoretical guidelines for appropriately setting the hyperparame-
ters, thereby enabling the achievement of the desired convergence
rate during the training process of DAPI.

Index Terms— α-mixing, deep approximate policy iteration
(DAPI), deep neural networks, minimax loss, nonasymptotic
error bound, reinforcement learning (RL).
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⌈a⌉ Smallest integer no less than a, a ∈ R.
⌊a⌋ Largest integer less than a, a ∈ R.
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a ∨ b max{a, b}, a, b ∈ R.
a ≲ b a ≤ Cb for some constant C > 0, a, b ∈ R.
a ≍ b a ≲ b ≲ a, a, b ∈ R.
N0 Nonnegative integers.
N Strictly positive integers.
∥x∥q ℓq -norm of the vector x = (x1, . . . , x p)

⊤
∈ Rp:

∥x∥q = (
∑p

i=1 |xi |
q)

1
q , q ∈ [1, ∞].

∥ f ∥
q
Lq (µ) ℓq -norm of the measurable function f : Rp

→

R: ∥ f ∥
q
Lq (µ) = Ex∼µ| f (x)|q

with the probability measure µ on Rp.

I. INTRODUCTION

REINFORCEMENT learning (RL) [1], [2] is a prominent
field in machine learning that addresses the challenge of

sequential decision-making. RL can be formalized as an agent
interacting with an environment to maximize its expected
cumulative rewards by selecting appropriate actions based
on its current state. The mathematical framework for RL is
often based on the concept of a Markov decision process
(MDP). In an MDP, the agent interacts with the environment
by taking actions, transitioning between different states, and
receiving rewards. The dynamics of the environment are
modeled as a Markov process, where the future state and
reward depend only on the current state and action, disre-
garding the past history. This Markovian assumption allows
for the application of well-established mathematical tools
and algorithms in RL. In recent years, deep reinforcement
learning has made significant progress by utilizing deep neural
networks to approximate value functions [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17].
This approach has demonstrated remarkable achievements
across various domains, including video games [18], [19],
AlphaGo [20], natural language processing [21], [22], [23],
[24], and robotics [25], [26], [27], [28].

Approximate policy iteration (API) is a widely studied
method for estimating value functions in RL [29], [30], [31],
[32]. Among the existing API techniques, the least-square
policy iteration (LSPI) [29] and the policy iteration with
Bellman residual minimization (BRM) [30] have received
considerable attention. LSPI employs least-squares regres-
sion to estimate value functions, while BRM introduces an
unbiased minimax loss function to minimize the Bellman
residual. Several extensions and variations of LSPI and BRM
have also been proposed, such as regularized policy itera-
tion [33], [34] and kernel-based LSPI [35], [36], [37]. For
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more in-depth information, readers can refer to [31] and the
references therein. Notably, certain modified versions of API
have been introduced to enhance the estimation of value
functions. Examples include conservative API [38], which
incorporates conservatism into the policy iteration process,
and gradient-based API with stochastic policies [39], [40],
[41], [42]. However, it is worth noting that the existing
API approaches primarily focus on linear functions or func-
tions residing in reproducing kernel Hilbert space for value
function approximation. Consequently, there is a lack of
theoretical studies exploring policy iteration with deep neural
networks, which offer more expressive function approxima-
tors. In the realm of error analysis, the existing studies have
predominantly focused on statistical errors while assuming
that approximation errors are negligible. Additionally, many
analyses assume that the MDP sequence is independently and
identically distributed (i.i.d.) [29]. However, this assumption
can be restrictive and impractical in real-world scenarios.
To address this, Antos et al. [30] introduced the concept of
β-mixing [43] as a relaxation of the i.i.d. assumption. It is
important to note that the α-mixing assumption [44], [45]
employed in this article is less restrictive than β-mixing,
allowing for more realistic modeling of dependencies in the
MDP sequence.

In this work, we explore deep approximate policy iteration
(DAPI), which employs deep neural networks to estimate the
optimal action-value function Q∗ by minimizing the minimax
average Bellman error. We conduct a theoretical analysis con-
sidering temporal dependencies in MDPs with the α-mixing
condition [44], [45], which is a weaker assumption com-
pared to the commonly used β-mixing condition. We provide
nonasymptotic error bounds that encompass both the statisti-
cal and approximation errors, enabling the determination of
suitable hyperparameter settings such as depth, width, and the
number of iterations for achieving desired convergence rates
based on the training sample size and the ambient dimension.
Additionally, we derive a novel approximation error bound
for the Hölder class using the rectified linear unit (ReLU)
activation [46] in ResNet [47], as well as an error bound for
nonparametric fittings using ReLU ResNet on dependent data.
These findings hold potential for independent exploration and
investigation.

Technically, our error analysis of DAPI proceeds as fol-
lows: we initially bound the Bellman residual error of the
minimax estimator at each iteration. Subsequently, we derive
nonasymptotic error bounds between Q∗ and the Q function
induced by the greedy policy through the process of error
propagation [30], [31], [48], [49], [50]. The main assumptions
employed in the theoretical analysis are the mild distribu-
tion shift condition and the realizability-type condition, the
necessity of which has been discussed recently [51], [52],
[53]. To bound the fitting error at each iteration, we need to
determine the approximation error of ReLU ResNet on the
Hölder class and the statistical error (generalization error) of
ReLU ResNet with dependent data.

Recent studies have extensively investigated the approxima-
tion power of deep neural networks [54], [55], [56], [57], [58],
[59], [60], [61], [62], [63], along with numerous references

therein. In alignment with [60], we offer a novel approximation
error bound for the Hölder class Hζ using ResNet with
ReLU activation, presenting independent interest and novelty.
Regarding generalization error, concentration inequalities and
learning theory for dependent data have been extensively
studied [30], [43], [44], [45], [64], [65], [66], [67], [68], [69]
along with numerous references. A substantial body of the
literature also exists on generalization analysis for deep neural
networks with i.i.d. data [60], [70], [71], [72], [73], [74], [75].
However, to the best of authors’ knowledge, we present the
first generalization error bound for ReLU ResNet with α-
mixing dependent data [44], [45] based on empirical process
with dependent data [76] and the pseudodimension of ReLU
network [77], which constitutes an original and independent
contribution.

The rest of this article is organized as follows. In Section II,
we give a brief introduction to the background of RL and deep
neural networks. In Section III, we present DAPI in detail.
In Section IV, we provide a detailed description of the error
analysis. In Section V, we establish the nonasymptotic error
bounds for DAPI. We summarize in Section VI. Proofs for all
the lemmas and theorems are provided in the Appendix.

II. BACKGROUND

A. Markov Decision Process

A discounted MDP is defined by a quintuple
(X ,A, P,R, γ ), where X is the state space, A is the
action space, P : X × A ⊆ Rd

→ M(X ) is the transition
probability kernel, R(· | x, a) refers to the distribution of
the immediate reward R(x, a), and γ ∈ [0, 1) is the discount
factor. Here, d denotes the dimension of state-action pairs
(X, A), and M(X ) denotes the set of probability measures
on (X ,B(X )), where B(X ) is the Borel σ -algebra on X .
Specifically, for each pair (x, a) ∈ X × A, P(·|x, a) is a
probability measure on (X ,B(X )) that defines the next-state
distribution upon taking action a in state x , and P(D|·, ·)

is a measurable function on X × A for every D ∈ B(X ).
Moreover, let π(·|x) denote the stochastic policy which is
an associated distribution of the action at state x . Given an
initial distribution ν ∈ M(X ), i.e., X1 ∼ ν, the batch data
{Z i }

n
i=1 = {X i , Ai , Ri , X ′

i }
n
i=1 with X ′

i := X i+1 is generated
by

X1 ∼ ν

Ai ∼ π(· | X i )

Ri ∼ R(· | X i , Ai )

X ′

i ∼ P(· | X i , Ai ) i = 1, . . . , n.

We assume that the MDP {Z i }
n
i=1 is strictly stationary

α-mixing (see Definition 2), which indicates that Z i s share
the same distribution. Let µ be the distribution of (X i , Ai )

for each i ∈ {1, . . . , n}. Then, µ = ν ◦ π is the stationary
distribution of this Markov chain {X i , Ai }

n
i=1, where µ = ν◦π

is defined by

µ(E) =

∫
E

π(da|x)ν(dx), E ∈ B(X ) × B(A).
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Denote the action-value function as

Qπ (x, a) := E

[
∞∑

i=1

γ i−1 Ri | X1 = x, A1 = a, π

]
.

For a given policy π , Qπ is the unique fixed point of the
Bellman operator T π , that is,

T π Q(x, a) := ER(x, a) + γ Pπ Q(x, a)

with

Pπ Q(x, a) :=

∫
P
(
dx ′

|x, a
)
π
(
da′

|x ′
)
Q
(
x ′, a′

)
.

Without loss of generality, suppose that R(x, a) ∈ [0, Rmax]

for each pair (x, a) ∈ X × A, and thus, Qπ takes values in
[0, (Rmax/1 − γ )]. Assume that there exists a policy π∗ that
maximizes Qπ , such that Q∗

:= Qπ∗

. Q∗ satisfies the optimal
Bellman equation Q∗

= T ∗ Q∗, where the optimal Bellman
operator T ∗ is given by

T ∗ Q(x, a) = E[R(x, a)]

+ γ EX ′∼P(·|x,a) max
a′∈A

[
Q
(
X ′, a′

)]
.

It can be observed that T ∗ is γ -contraction in the sup-norm.
We can define the greedy policy for an action-value function
Q as

π(x; Q) ∈ argmax
a∈A

Q(x, a), x ∈ X .

These definitions and properties provide the foundation for
the study of MDPs and their associated optimal policies and
action-value functions.

B. ResNet With ReLU Activation

We now introduce the feedforward neural networks and
ResNet [47] with ReLU activation, respectively.

We use F to denote the class of feedforward neural net-
works fθ : Rd

→ R with parameter θ , depth D, and width
W . Each network fθ is defined as

fθ (x) = vD ◦ ρ ◦ vD−1 ◦ ρ ◦ · · · ◦ ρ ◦ v1 ◦ ρ ◦ v0(x), x ∈ Rd

where ∥ fθ∥∞ ≤ B holds for some 0 < B < ∞. Here, ∥ ·

∥∞ refers to the sup-norm, ρ(x) = max(0, x) is the ReLU
activation function operating pointwisely on x , and

vi (x) = Ãi x + bi i = 0, 1, . . . ,D

with the weight matrix Ãi ∈ Rdi+1×di and the bias vector
bi ∈ Rdi+1 , where di is the width of the i th layer. The input
data correspond to the first layer, and the output corresponds
to the last layer. The feedforward neural network fθ consists
of D hidden layers, resulting in a total of (D + 1) layers.
We represent the width of each layer using a (D + 1)-vector
(d0, d1, . . . , dD)⊤, where d0 = d is the dimension of the input
(X, A), and dD+1 = 1 is the dimension of the output. The
width W is defined as the maximum width among the hidden
layers, specifically, W = max{d1, . . . , dD}.

Let m ∈ N be a positive integer. A residual block R : Rm
→

Rm with depth N and width M = max{Ñκ : κ = 0, 1, . . . , N }

is defined as

R(0)(x) = x

R(κ)(x) = ρ
(

ÃκR(κ−1)(x) + bκ

)
, κ = 1, . . . , N

R(x) = R(N )(x) + x (1)

where Ãκ ∈ RÑκ×Ñκ−1 , bκ ∈ RÑκ , Ñ0 = ÑN = m,
Ñ1, . . . , ÑN−1 ∈ N, and ρ is the ReLU activation function.
A function fφ : Rd

→ R implemented by a ReLU ResNet
with K − 1 residual block is defined by

f(0)(x) = x

f(κ)(x) = ρ
(

ÃκRκ( fκ−1(x)) + bκ

)
, κ = 1, . . . , K − 1

fφ(x) := f(K )(x) = ÃK f(K−1)(x) + bK (2)

where Rκ : Rdκ → Rdκ , κ = 1, . . . , K −1, is the residual block
with depth Ñκ and width Mκ , with d1 = d , M1 = d , Ãκ ∈

Rdκ+1×dκ , and ÃK+1 ∈ R1×dK+1 . Without loss of generality,
we assume that the depth of each residual block is small and
equal such that Ñκ = N = O(1) for κ = 1, . . . , K −1. We use
F K to denote the class of ReLU ResNet fφ : Rd

→ R with
parameter φ, depth D = (N + 1)(K − 1) + 1, and width
W = max{Mκ : κ = 1, . . . , K − 1}, where ∥ fφ∥∞ ≤ B.

III. DEEP APPROXIMATE POLICY ITERATION

In DAPI, it follows that:

Q0

I
−→ π1

E
−→ Q1

I
−→ π2

E
−→ · · ·

E
−→ Q J−1

I
−→ πJ . (3)

Here, π j is the greedy policy with respect to Q j−1, Q j is the
approximation action-value function for the policy π j , and J
is a positive integer large enough. The symbol

E
−→ denotes

a policy evaluation, and
I

−→ denotes a policy improvement.
Given the policy π j in (3), to obtain the estimation Q j of the
action-value function Qπ j , we introduce the minmax loss [51]
related to the average Bellman errors. It is formulated as
follows:

min
Q∈U1

max
O∈U2

|L(Q, O)|.

Here, U1 and U2 are some measurable function classes, and

L(Q, O) := E(X,A)∼µ

[
O(X, A)(Q(X, A) − T π j Q(X, A))

]
where Q ∈ U1, O ∈ U2. If Qπ j ∈ U1 and U1 = U2 are
supposed, it yields that

Qπ j ∈ arg min
Q∈U1

max
O∈U2

|L(Q, O)|.

In this article, we assume that both U1 and U2 are Hölder
classes as defined in Definition 4, and that Qπ j is contained
within a Hölder class. Meanwhile, at sample level, we denote
the empirical minimax estimator as

Q j ∈ arg min
Q∈G1

max
O∈G2

∣∣L̂(Q, O)
∣∣ (4)

where

L̂(Q, O) :=
1
n

n∑
i=1

O(X i , Ai )(Q(X i , Ai ) − Yi )

is the empirical minimax loss function with

Yi := Ri + γ

∫
Q(X i+1, a)π j (da|X i+1)
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and Q ∈ G1, O ∈ G2, and G1,G2 are the ReLU ResNet class
F K for approximating the Hölder class. Moreover, this empir-
ical loss L̂ is unbiased, that is, E{Zi }

n
i=1
L̂(Q, O) = L(Q, O).

This property is demonstrated in Lemma 1. For notational
simplicity, we denote by

LU2(Q) := sup
O∈U2

|L(Q, O)|

LG2(Q) := sup
O∈G2

|L(Q, O)|

L̂G2(Q) := sup
O∈G2

|L̂(Q, O)|.

Then, it can be deduced that

Q j ∈ argmin
Q∈G1

L̂G2(Q) = argmin
Q∈G1

sup
O∈G2

∣∣L̂(Q, O)
∣∣.

Lemma 1 (Unbiased Loss): L̂(Q, O) is an unbiased loss,
that is, E{Zi }

n
i=1
L̂(Q, O) = L(Q, O) for each pair (Q, O) ∈

U1 × U2.
The detailed procedure of DAPI is summarized in

Algorithm 1.

Algorithm 1 Deep Approximate Policy Iteration
1: Input: MDP (X ,A, R, P, γ ), function class F K , initial

value Q0.
2: for j = 1, . . . , J − 1 do
3: Obtain greedy policy π j .
4: Sample (X i , Ai , Ri , X ′

i ), i = 1, . . . , n.
5: Compute Yi := Ri + γ

∫
Q(X i+1, a)π j (da|X i+1), and

obtain the j-step action-value function Q j via (4), that
is,

Q j ∈ arg min
Q∈F K

max
O∈F K

|L̂(Q, O)|.

6: end for
7: Output: The greed policy πJ := π(·; Q J−1) with respect

to Q J−1.

In j th iteration of DAPI (Algorithm 1), j = 1, . . . , J − 1,
it mainly solves the minimax optimization problem (4), which
can be regarded as obtaining a minimax estimator of a
nonparametric regression problem with a minimax loss. There-
fore, to investigate the computational complexity of DAPI is
equivalent to derive the total cost of solving J − 1 times
nonparametric regression problems with a minimax loss.

IV. ERROR ANALYSIS

In this section, we present the theoretical analysis of DAPI.
That is to bound ∥Q∗

−QπJ ∥L2(ν), where ν is an admissible dis-
tribution and is allowed to differ from the sample distribution
µ in Algorithm 1. To establish the nonasymptotic error bound
for ∥Q∗

− QπJ ∥L2(ν), we initially employ error propagation
techniques to transform it into the control of the Bellman resid-
ual error, represented as ∥Q j −T π j Q j∥L2(µ), as demonstrated
in Proposition 1. Subsequently, this Bellman residual error can
be effectively controlled through the concept of excess risk,
denoted as LU2(Q j ) −LU2(Qπ j ), leading to a further decom-
position that enables us to control the excess risk in terms of

bounding statistical and approximation errors, as expounded in
Lemma 2. Finally, we bound the statistical and approximation
errors by employing techniques from empirical process theory
with dependent data [30], [43], [44], [45], [64], [65], [66], [67],
[68], [69] and deep approximation theory [54], [55], [56], [57],
[58], [59], [60], [61], [62], [63], respectively. These results
are presented in Theorems 1 and 2. In this intricate endeavor,
the pivotal role of concentration coefficients takes center stage
within the error propagation. To this end, we first introduce
the following definition of concentration coefficients, designed
to control distributional shifts. This control is imperative, as a
certain level of concentratability is deemed necessary for the
theoretical development of batch mode RL, as acknowledged
in [51], [52], [78], and [53].

Definition 1 (Concentration Coefficients): Let ν1, ν2 ∈

M(X × A) be two probability measures that are absolutely
continuous with respect to the Lebesgue measure on X ×A.
Let {πt }t≥1 be a sequence of policies. Suppose the initial
state-action pair (X0, A0) of the MDP has distribution ν1,
and we take action At according to the policy πt . For any
integer m, we denote the distribution of {(X t , At )}

m
t=0 by

ν1 Pπ1 Pπ2 · · · Pπm . The mth concentration coefficient is defined
as

cν1,ν2(m) = sup
π1,...,πm

∥∥∥∥d(ν1 Pπ1 Pπ2 . . . Pπm )

dν2

∥∥∥∥
∞

(5)

where the supremum is taken over all possible policies.
In (5), the notation (dµ̃/dν̃) refers to the Radon–Nikodym
derivative of µ̃ with respect to ν̃, where µ̃ and ν̃ are the
two probability measures, see [79], [80], and [81] for more
details. Furthermore, let µ be the distribution of (X i , Ai ) in
Algorithm 1 and let ν be a fixed distribution on X×A. Denote

Cν,µ := (1 − γ )2
·

∑
m≥1

mγ m−1cν,µ(m) (6)

and assume Cν,µ < ∞, where (1−γ )2 in (6) is a normalization
term, since

∑
m>1 γ m−1

· m = (1 − γ )−2.
In order to bound ∥Q∗

− QπJ ∥L2(ν) for any admissible
probability distribution ν, we can propagate this error, as ana-
lyzed in [30] and [31]. As a result, it can be controlled by
the Bellman residual error ∥Q j − T π j Q j∥L2(µ), as shown in
Proposition 1.

Proposition 1 (Error Propagation): Let J be a positive
integer and Qmax ≤ Rmax/(1− γ ). Then, for any sequence
of functions {Q j }

J−1
j=0 with |Q j | ≤ Qmax, we have

∥Q∗
− QπJ ∥L2(ν)

≤
2γ

(1 − γ )2

(
C1/2

ν,µ max
0< j<J

∥ε j∥L2(µ) + γ J/2 Rmax

)
where ε j := Q j − T π j Q j denotes the Bellman residual of
Q j for j = 1, . . . , J − 1, and Qmax and Rmax are two
positive constants bounding the action-value function and the
immediate reward, respectively.

Proposition 1 indicates that it suffices to bound
∥Q j − T π j Q j∥L2(µ). To accomplish this objective, we
first decompose the excess risk LU2(Q j ) − LU2(Qπ j )

into three terms, including one statistical error and two
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approximation errors, as shown in Lemma 2. It is worth
noting that we can straightforwardly demonstrate that

E∥Q j − T π j Q j∥
2
L2(µ)

≤ E
(
LU2

(
Q j
)
− LU2

)
.

Please refer to Appendix J for comprehensive proofs and
detailed elaboration of this assertion. We can then establish
bounds for each of these errors using tools from empirical
process theory with dependent data and deep approximation
theory.

Lemma 2 : Provided with a random sample {Z i }
n
i=1, the

excess risk satisfies

LU2

(
Q j
)
− LU2(Qπ j )

≤ 2 sup
φ∈G1

|L̂G2(φ) − LG2(φ)|︸ ︷︷ ︸
statistical error: Esta

+ inf
φ∈G1

LU2(φ) − LU2(Qπ j )︸ ︷︷ ︸
app error of G1:EG1

+ 2 sup
φ∈G1

|LU2(φ) − LG2(φ)|︸ ︷︷ ︸
app error of G2: EG2

.

A. Statistical Error

The term Esta represents the statistical error with dependent
data {Z i }

n
i=1. To analyze this error, we first recall the definition

α-mixing [44], [45] for measuring the dependence of a general
stochastic process {Wt }t≥1.

Definition 2 (α-Mixing): Let {Wt }t≥1 be a stochastic pro-
cess. Denote by W 1:n the collection (W1, . . . , Wn), where we
can allow n = ∞. Let σ(W i : j ) denote the σ -algebra generated
by W i : j (i ≤ j). The mth α-mixing coefficient of {Wt }t≥1,
denoted as αm , is defined as follows:

αm = sup
t≥1

sup
A∈σ(W 1:t),B∈σ(W t+m:∞)

|P(AB) − P(A)P(B)|.

{Wt }t≥1 is said to be α-mixing if αm → 0 as m → ∞.
In particular, we say that an α-mixing process mixes at
an exponential rate with parameters ᾱ, a, η > 0 if αm ≤

ᾱ exp(−amη) holds for all m ≥ 0.
Next, we introduce the concept of covering number [70].

The covering number holds significant importance in our sta-
tistical error analysis, serving as a measure of the complexity
of a function class. As investigated in [30], [43], [44], [45],
[64], [65], [66], [67], [68], and [69], through the utilization
of empirical process techniques with dependent data, we can
express the upper bound of the statistical error Esta in terms
of the complexity of the function class G1, exemplified by the
covering number.

Definition 3 (Covering Number): The covering number
N (ε, F, d) related to a semimetric d on the set F is defined
as

N (ε, F, d) = min
κ

{
there are g1, . . . , gκ such that

min
1≤ j≤κ

d
(

f, g j
)

≤ ε for any f in F
}
.

Following [44] and [45], we derive the tail probability
bound of the empirical process with α-mixing data indexed
by functions in F K in terms of the covering number of F K .
Then, we use Vapnik–Chervonenkis (VC) dimension [70] to
bound the covering number, which can be further bounded
by the width and depth of the ReLU ResNet [77]; details are
shown in the Appendix. Finally, we obtain the upper bound
for the statistical error Esta in the following theorem.

Theorem 1 : Suppose that G1 and G2 are ReLU ResNet
classes F K , and {Z i }

n
i=1 is strictly and exponentially α-mixing

with parameters ᾱ, a, η > 0 as defined in Definition 2. Then,

E sup
φ∈G1

|L̂G2(φ) − LG2(φ)|

≤ CB,η,a,ᾱ,Rmax
·

(
WD

√
log(WD)

)√ log n
nη/(1+η)

for a constant CB,η,a,ᾱ,Rmax
depending on B, η, a, ᾱ, and Rmax.

Remark 1 : To the best of authors’ knowledge, Theorem 1
represents the first generalization bound for ReLU ResNets
with dependent data. This marks a nontrivial extension of
generalization analysis for deep neural networks with i.i.d.
data [60], [70], [71], [72], [73], [74], [75]. Theorem 1 implies
that the statistical error bound depends on n, the width W , and
the depth D, and it converges to 0 as n approaches infinity for
fixed values of W and D.

B. Approximation Error

To derive the respective upper bounds for the approximation
errors EG1 and EG2 based on the existing approximation theory,
we need to bridge the gap between EG1 , EG2 , and the following
quantities:

inf
φ∈G1

∥Qπ j − φ∥L1(µ)

sup
v∈U2

inf
O∈G2

∥O − v∥L1(µ).

This bridging can indeed be achieved using Lemma 3.
Lemma 3 : Assume that function classes U1,U2,G1, and G2

are uniformly bounded by a constant B. Then, we have

EG1 ≤ B
(
1 + cµ,µ(1)

)
inf

φ∈G1

∥Qπ j − φ∥L1(µ)

EG2 ≤ (2B + Rmax) · sup
v∈U2

inf
O∈G2

∥O − v∥L1(µ)

where cµ,µ(1) is a constant defined in (5).
As a consequence of Lemma 3, we only need to provide

upper bounds for the approximation errors infφ∈G1 ∥Qπ j −

φ∥L1(µ) and supv∈U2
infO∈G2 ∥O −v∥L1(µ). Both of these errors

can be bounded by the approximation error of the ReLU
ResNet class F K to the Hölder class under the assumption
that the function classes U1 and U2 are Hölder classes, G1 and
G2 are ReLU ResNet classes F K , and Qπ j is contained in the
Hölder class, as defined in Definition 4. To that end, we assume
that the distribution of the state action (X, A) is supported on
[0, 1]

d without loss of generality.
Definition 4 (Hölder Class): For ζ > 0 with ζ = s + r ,

where s ∈ N0 and r ∈ (0, 1] and d ∈ N, we denote Hölder
class Hζ as

Hζ
=

{
f : [0, 1]

d
→ R, max

∥α̃∥1≤s

∥∥∂ α̃ f
∥∥

∞
≤ B
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max
∥α̃∥1=s

sup
x ̸=y

∣∣∂ α̃ f (x) − ∂ α̃ f (y)
∣∣

∥x − y∥r
∞

≤ B
}
.

We give a novel approximation error bound for Hölder
class using ResNet with the ReLU activation, which is of
independent interest. Furthermore, we improve the result of
dependence on the ambient dimension d from O(8ζ (ζ + 1)d)

[59] to O(dζ ) by following [60].
Theorem 2 : Assume f ∈ Hζ with ζ = s + r, s ∈ N0

and r ∈ (0, 1]. For any W, L ∈ N, there exists a function f̃
belonging to the ReLU ResNet class F K with width W ≍

(s + 1)2ds+1W⌈log2 8W⌉ and depth D ≍ (s + 1)2L⌈log2 8L⌉

such that

| f (x) − f̃ (x)|

≲ B(s + 1)2ds+(ζ∨1)/2
⌊(W L)2/d

⌋
−ζ

for all x ∈ [0, 1]
d
\�([0, 1]

d , S, δ), where

�([0, 1]
d , S, δ) = ∪

d
i=1

{
x = [x1, x2, . . . , xd ]

⊤
:

xi ∈ ∪
S−1
k=1 (k/S − δ, k/S)

}
with S = ⌈(W L)2/d

⌉ and δ ∈ (0, 1/(3S)].
As a consequence of Theorem 2, we can derive the approx-

imation results in L p-norm with 1 ≤ p < ∞, where the width
and depth depend on the ambient dimension d polynomially.
To establish the validity of Theorem 2, our proof proceeds
in two key steps. First, we demonstrate that ReLU ResNet
can be expressed as ReLU FNN. Subsequently, we establish
the approximation capabilities of ReLU FNN for the Hölder
class. The latter result directly follows from [60]. For a
comprehensive presentation of the proof, we refer readers to
the Appendix.

V. NONASYMPTOTIC ERROR BOUNDS

Building upon the comprehensive analyses of the statis-
tical error provided in Theorem 1 and the approximation
error as detailed in Theorem 2, we proceed to establish a
nonasymptotic error bound for the excess risk, denoted as
LU2(Q j ) − LU2(Qπ j ). This can be achieved by judiciously
selecting appropriate width W and depth D within the ReLU
ResNet class F K . Our findings are encapsulated in the ensuing
Theorem 3, which offers a precise characterization of the
error bound. Moreover, we extend our analysis to bound
∥Q∗

−QπJ ∥L2(ν) by incorporating the completeness assumption
(Assumption 1), as delineated in Theorem 4.

Theorem 3 : Suppose that G1 and G2 are the ReLU ResNet
class F K , U1 and U2 are the Hölder class Hζ , Qπ j ∈ Hζ

with ζ = s + r, s ∈ N0 and r ∈ (0, 1], {Z i }
n
i=1 is

strictly and exponentially α-mixing with parameters ᾱ, a, η >

0 defined in Definition 2, and the probability distribution
µ of (X, A) is absolutely continuous with respect to the
Lebesgue measure. Then, for the ReLU ResNet class F K

with width W = O((n(η/1+η))(d/4(d+2ζ )) log n) and depth D =

O((n(η/1+η))(d/4(d+2ζ )) log n), the excess risk satisfies

E
(
LU2

(
Q j
)
− LU2(Qπ j )

)
≤ CB,s,Rmax,B,η,a,ᾱ,cµ,µ(1) ·

[
ds+(ζ∨1)/2

(
n

η

1+η

) −ζ

d+2ζ

(log n)3
]

where CB,s,Rmax,B,η,a,ᾱ,cµ,µ(1) is a constant depending on
B, s, Rmax,B, η, a, ᾱ, cµ,µ(1).

Next, we construct the nonasymptotic error bound of ∥Q∗
−

QπJ ∥L2(ν). To that end, we introduce the following complete-
ness assumption.

Assumption 1 (Completeness): ∀Q ∈ F K , T π j Q ∈ Hζ .
Theorem 4 : Assume that, in addition to the conditions of

Theorem 3, Assumption 1 holds. Then,

E∥Q∗
− QπJ ∥L2(ν)

≤
CB,s,Rmax,B,η,a,ᾱ,cµ,µ(1)γ C1/2

ν,µ

(1 − γ )2

× ds/2+(ζ∨1)/4
(

n
η

1+η

) −ζ

2d+4ζ

(log n)3/2

+
2γ (2+J )/2

(1 − γ )2 · Rmax.

Remark 2 : The completeness assumption outlined in
Assumption 1, as employed in Theorem 4, is considered to
be a relatively lenient requirement. It is satisfied when the
underlying MDP adheres to certain smoothness conditions,
as extensively discussed in [82]. Notably, Chen and Jiang [53]
emphasized the indispensable nature of such completeness
conditions. Furthermore, Theorem 4 provides an insight that
the nonasymptotic error bound, neglecting other terms, is on
the order of O(n(−ζ/2d+4ζ )

+ γ (2+J )/2). Consequently, we can
establish the consistency of DAPI as n and J tend to infinity.
However, it is essential to acknowledge that this convergence
rate is affected by the curse of dimensionality, especially
when dealing with high-dimensional problems. As a result,
we consider this aspect as a subject for future research,
warranting further exploration.

VI. CONCLUSION

In this work, we delve into DAPI, employing the ReLU
ResNet to estimate the optimal action-value function Q∗. Our
primary objective revolves around establishing a nonasymp-
totic error bound for ∥Q∗

− QπJ ∥L2(ν). This bound, crucial to
our analysis, is intricately tied to the Bellman residual error
∥Q j −T π j Q j∥L2(µ) via error propagation mechanisms. To dis-
sect and ultimately bound the quantity ∥Q j − T π j Q j∥L2(µ),
we disentangle it into two distinct sources of error: statistical
and approximation errors. To tackle these, we enlist the aid of
tools from empirical process theory, particularly suited for han-
dling dependent data, and draw upon the rich domain of deep
approximation theory. One of our significant contributions is
the derivation of a generalization bound tailored for ReLU
ResNet operating in conjunction with α-mixing dependent
data. This departures from the traditional reliance on β-mixing
assumptions, as commonly seen in prior studies focusing
on MDPs, and expands the scope of applicable scenarios.
Moreover, we derive a novel approximation error bound for
the Hölder class utilizing ReLU ResNet. This bound exhibits
improved scalability with respect to the ambient dimension,
transitioning from an exponential dependence to a polynomial
one. However, it is essential to acknowledge the persistent
challenge posed by the curse of dimensionality, which still
affects our nonasymptotic error bounds. To address this,
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we posit that leveraging the inherent low-dimensional structure
of the data might hold the key to mitigating this issue. Explor-
ing these avenues represents an interesting and challenging
direction for future research. Additionally, we recognize the
need for empirical validation through numerical experiments
and practical applications. Consequently, we intend to embark
on such endeavors in future work to further assess and refine
the performance of DAPI in real-world settings.

APPENDIX

In this appendix, we prove Lemmas 1–3, Proposition 1, and
Theorems 1–4.

A. Proof of Lemma 1

Proof: Recall that Yi := Ri+γ
∫

Q(X i+1, a)π j (da|X i+1)

and Z i := {X i , Ai , Ri , X i+1}. Some elementary computation
yields that for each pair (Q, O) ∈ U1 × U2

EZi [O(X i , Ai )(Q(X i , Ai ) − Yi )]

= E(X i ,Ai )

[
E(Zi |X i ,Ai )(O(X i , Ai )(Q(X i , Ai ) − Yi )|X i , Ai )

]
= E(X i ,Ai )

[
O(X i , Ai )(Q(X i , Ai ) − T π j Q(X i , Ai ))

]
= E(X,A)∼µ

[
O(X, A)(Q(X, A) − T π j Q(X, A))

]
.

Hence, we have

E{Zi }
n
i=1
L̂(Q, O) = L(Q, O).

□

B. Proof of Proposition 1

Proof: This proposition is directly followed from [30]
and [31]. □

C. Proof of Lemma 2

Proof: For any φ ∈ G1, we can deduce that

LU2

(
Q j
)
− LU2(Qπ j ) =

[
LU2

(
Q j
)
− LG2

(
Q j
)]

+
[
LG2

(
Q j
)
− L̂G2

(
Q j
)]

+
[
L̂G2

(
Q j
)
− L̂G2(φ)

]
+
[
L̂G2(φ) − LG2(φ)

]
+
[
LG2(φ) − LU2(φ)

]
+
[
LU2(φ) − LU2(Qπ j )

]
where the first and fifth terms can be bounded by the approx-
imation error of U2, that is, supφ∈G1

|LU2(φ) − LG2(φ)|, the
second and fourth terms can be bounded by the statistical
error supφ∈G1

|L̂G2(φ) − LG2(φ)|, and the third term satisfies
L̂G2(Q j ) − L̂G2(φ) ≤ 0 by the optimality of Q j . Taking
infimum over all φ ∈ G1 yields the desired result, i.e.,

LU2

(
Q j
)
− LU2(Qπ j ) ≤ 2 sup

φ∈G1

|L̂G2(φ) − LG2(φ)|

+ 2 sup
φ∈G1

|LU2(φ) − LG2(φ)|

+ inf
φ∈G1

LU2(φ) − LU2(Qπ j ).

□

D. Proof of Lemma 3

Proof: For notation simplicity, let Eµ Q denote
E(X,A)∼µ Q(X, A) for any measurable function Q. Then, some
elementary algebraic computations show that

EG1 = inf
φ∈G1

sup
v∈U2

{
|Eµ(v(φ − T π j φ))|

}
≤ B inf

φ∈G1

∥Qπ j − φ∥L1(µ)

+ B inf
φ∈G1

∥T π j Qπ j − T π j φ∥L1(µ)

≤ B
(
1 + cµ,µ(1)

)
inf

φ∈G1

∥Qπ j − φ∥L1(µ)

where the first inequality holds since function classes
U1,U2,G1, and G2 are uniformly bounded by constant B, the
last inequality follows from:

∥T π j Qπ j − T π j φ∥L1(µ) ≤ γ cµ,µ(1)∥Qπ j − φ∥L1(µ).

Similarly, we also have

EG2 = sup
φ∈G1

∣∣∣ sup
v∈U2

{
|Eµ(v(φ − T π j φ))|

}
− sup

O∈G2

{
|Eµ(O(φ − T π j φ))|

}∣∣∣
≤ sup

φ∈G1

sup
v∈U2

inf
O∈G2

∥(v − O)(φ − T π j φ)∥L1(µ)

≤ (2B + Rmax) · sup
v∈U2

inf
O∈G2

∥O − v∥L1(µ).

□

E. Preliminary Lemmas for Theorem 1

First, we introduce the definition of uniform covering num-
ber [70]. Let F be a class of measurable functions mapping
Rd to R. For a given sequence z = (z1, . . . , zn) with zi ∈ Rd ,
i = 1, . . . , n, let F |z := {( f (z1), . . . , f (zn)) : f ∈ F} be the
subset of Rn . For a positive number ε, let N (ε,F |z, ∥·∥∞) be
the covering number of F |z under the uniform norm ∥·∥∞ with
radius ε. Denote the uniform covering number Nn(ε,F, ∥·∥∞)

as the maximum over all z ∈ Rdn of the covering number
N (ε,F |z, ∥·∥∞), that is,

Nn(ε,F , ∥·∥∞)

:= max
{
N (ε,F |z, ∥·∥∞) : z = (z1, . . . , zn) ∈ Rdn}. (E1)

Lemma A.1 [44, Theorem 4.3]: Let (Zn)n≥1 be an
Rd -valued and exponentially decayed α-mixing process with
parameters ᾱ, a, η > 0. Furthermore, we assume that h :

Rd
→ R is a bounded measurable function for which there

exists constants M̃ > 0 and σ ≥ 0 such that E[h(Zn)] = 0 and
E[h2(Zn)] ≤ σ 2 for all n ≥ 1 and ∥h∥∞ ≤ M̃ . For n ≥ 1,
we define

n(η)
:=

⌊
n
⌈(

8n
a

) 1
η+1
⌉−1⌋

. (E2)

Then, for any n ≥ 1 and all ε > 0, we have

P

(
{ω ∈ � :

1
n

n∑
i=1

h(Z i (ω)) ≥ ε}

)

Authorized licensed use limited to: National University of Singapore. Downloaded on February 08,2025 at 04:44:46 UTC from IEEE Xplore.  Restrictions apply. 



KANG et al.: API WITH DEEP MINIMAX AVERAGE BELLMAN ERROR MINIMIZATION 2295

≤
(
1 + 4e−2ᾱ

)
exp

(
−

3ε2n(η)

6σ 2 + 2εM̃

)
.

Lemma A.2 : Suppose that {Z1, . . . , Zn} is a strictly sta-
tionary and exponentially decayed α-mixing process with
parameters ᾱ, a, η > 0. Then, for all fixed ε > 0 and the
measurable function class FM̃ bounded by M̃ , we have

P

(
sup
f ∈FM̃

|
1
n

n∑
i=1

f (Z i ) − E
[

f (Z1)
]
| > ε

)
≤ 2

(
1 + 4e−2ᾱ

)
N2n

(ε

4
, FM̃ , ∥ · ∥∞

)
× exp

(
−

3ε2n(η)

96M̃2 + 32εM̃

)
.

Proof: To begin, we introduce a separate set of random
variables {Z̃1, . . . , Z̃n}, which serve as an independent copy
of {Z1, . . . , Zn}. Next, we consider another set of independent
random variables {σ1, . . . , σn}, which are uniformly distributed
over the set {−1, 1}. These variables are independent of both
{Z1, . . . , Zn} and {Z̃1, . . . , Z̃n}. As a result, the redefined
sequence {(σ1, Z1), . . . , (σn, Zn)} retains the property of being
α-mixing, just like the original sequence {Z1, . . . , Zn}, as long
as the latter possesses this property. Now, let us define
G(ε/4, FM̃ , ∥·∥∞) as an ε/4-uniform covering of the function
class FM̃ . The uniform covering number of this set is denoted
as N2n(ε/4, FM̃ , ∥·∥∞) and is defined in (E1). For any fixed
function f belonging to the function class FM̃ , there exists
a function g in G(ε/4, FM̃ , ∥·∥∞) that satisfies the following
conditions for i ∈ {1, . . . , n}:

| f (Z i ) − g(Z i )| < ε/4 and | f
(
Z̃ i
)
− g

(
Z̃ i
)
| < ε/4.

Furthermore, for any function g belonging to
G(ε/4, FM̃ , ∥·∥∞), the following properties hold: ∥g∥∞ ≤ M̃ ,
E[σi g(Z i )] = 0, E[σi g(Z̃ i )] = 0, E[g2(Z i )] ≤ M̃2, and
E[g2(Z̃ i )] ≤ M̃2. Consequently, utilizing the Bernstein-type
inequality presented in Lemma A.2, we can deduce that

P

(
sup
f ∈FM̃

∣∣∣∣∣1n
n∑

i=1

f (Z i ) − E
[

f (Z1)
]∣∣∣∣∣ > ε

)

≤ P

(
sup
f ∈FM̃

∣∣∣∣∣1n
n∑

i=1

f (Z i ) −
1
n

n∑
i=1

f (Z̃ i )

∣∣∣∣∣ > ε

)

≤ P

(
sup
f ∈FM̃

∣∣∣∣∣1n
n∑

i=1

σi
(

f (Z i ) − f (Z̃ i )
)∣∣∣∣∣ > ε

)

≤ P
(

sup
g∈G(ε/4,FM̃ ,∥·∥∞)

∣∣∣1
n

n∑
i=1

σi (g(Z i ) − g(Z̃ i ))

∣∣∣ > ε/2
)

≤ P

(
sup

g∈G(ε/4,FM̃ ,∥·∥∞)

(∣∣∣∣∣1n
n∑

i=1

σi g(Z i )

∣∣∣∣∣
)

> ε/4

)
≤ 2

(
1 + 4e−2ᾱ

)
N2n

(ε

4
, FM̃ , ∥ · ∥∞

)
× exp

(
−

3ε2n(η)

96M̃2 + 32εM̃

)
where n(η) is given in (E2) and ᾱ, a, and η are the given
parameters in exponentially decayed α-mixing process. Here,
the first inequality is established through the utilization of

Jensen’s inequality, the second inequality is justified based
on the fact that the difference between f (Z i ) and f (Z̃ i ),
as well as the product of this difference and σi follow the
same probability distribution, the third inequality is a direct
consequence of the definition of the uniform covering number,
the fourth inequality is derived through elementary algebraic
calculations, and the last inequality is supported by invoking
Lemma A.2 on the sequence {(σ1, Z1), . . . , (σn, Zn)}. □

F. Proof of Theorem 1

Proof: As shown in Lemma A.3, the ReLU FNN class
F and the ResNet ReLU class F K are equivalent. In the
following proof, we use F to denote the neural network class
for simplicity. Denote the composite function class

ℓ ◦ (G1,G2) : =

{
ℓQ,O : ℓQ,O(x, a, r, x ′) = O(x, a)

[
Q(x, a)

− r − γ

∫
Q(x ′, a)π j (da|x ′)

]
Q ∈ G1, O ∈ G2

}
.

Then, it follows that:

Esta = sup
Q∈G1

∣∣∣ sup
O∈G2

∣∣∣∣∣1n
n∑

i=1

O(X i , Ai )(Q(X i , Ai ) − Yi )

∣∣∣∣∣
− sup

O∈G2

|Eµ(O(Q − T π j Q))|

∣∣∣
≤ sup

Q∈G1,O∈G2

∣∣∣1
n

n∑
i=1

O(X i , Ai )(Q(X i , Ai ) − Yi )

− Eµ(O(Q − T π j Q))

∣∣∣
= sup

Q∈G1,O∈G2

∣∣∣1
n

n∑
i=1

ℓQ,O(X i , Ai , Ri , X i+1)

− EℓQ,O(X i , Ai , Ri , X i+1)

∣∣∣.
Denote VCG1 , and VCG2 as the VC-dimension of G1, and G2,
respectively. Thus, for any δ ≥ 0, we have

E sup
Q∈G1,O∈G2

∣∣∣1
n

n∑
i=1

ℓQ,O(X i , Ai , Ri , X i+1)

− EℓQ,O(X i , Ai , Ri , X i+1)

∣∣∣
≤ δ +

∫ 2M̃

δ

P
(

sup
Q∈G1,O∈G2

∣∣∣1
n

n∑
i=1

ℓQ,O(X i , Ai , Ri , X i+1)

− EℓQ,O(X1, A1, R1, X2)

∣∣∣ > ε
)

dε

≤ δ +

∫ 2M̃

δ

2CN2n(ε/4, ℓ ◦ (G1,G2), ∥ · ∥∞)

× exp
(

−
3n(η)ε2

96M̃2 + 32M̃ε

)
dε

≤ δ +

∫ 2M̃

δ

2CN2n

( ε

4λ
,G1, ∥ · ∥∞

)
×N2n

( ε

4λ
,G2, ∥ · ∥∞

)
× exp

(
−

3n(η)ε2

96M̃2 + 32M̃ε

)
dε
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≤ δ +

∫ 2M̃

δ

2C
(

2eBn
ε

4λ
· VCG1

)VCG1

×

(
2eBn

ε
4λ

· VCG2

)VCG2

× exp
(

−
3n(η)ε2

96M̃2 + 32M̃ε

)
dε

≤ δ +

∫ 2M̃

δ

2C

(
2eBn

δ
4λ

· VCF

)2VCF

× exp
(

−
3n(η)ε2

96M̃2 + 32M̃ε

)
dε

≤ δ + 4C M̃
(

8λeBn
δVCF

)2VCF

exp
(

−
3n(η)δ2

160M̃2

)
≤ CB,η,a,ᾱ,Rmax

n−
η

2(1+η) ·
√

log n · VCF .

Here, the first inequality holds since ℓ ◦ (G1,G2) is bounded
by M̃ := B(2B + Rmax), the second inequality holds by
Lemma A.2 with C := 1 + 4e−2ᾱ, the third inequality is
established by considering the Lipschitz continuity of the
composite function ℓQ,O which possesses a Lipschitz constant
denoted as λ := 2B + Rmax, the fourth inequality is justified
through a relation connecting the covering number and the
VC-dimension of the ReLU neural networks F , as expounded
in [70], i.e.,

N2n

( ε

4λ
,F , ∥ · ∥∞

)
≤

(
2eBn

ε
4λ

· VCF

)VCF

the sixth inequality holds by some algebraic calculations, and
the last inequality holds with constant CB,η,a,ᾱ,Rmax

depend-
ing on B, η, a, ᾱ, and Rmax due to the fact that n(η)

≥

2−(2η+5/1+η)a(1/1+η)n(η/1+η) when ⌈t⌉ ≤ 2t for all t ≥ 1 and
⌊t⌋ ≥ t/2 for all t ≥ 2 and setting

δ2
=

160M̃2

n
η

1+η

VCF log
(

8λeBn
VCF

)
.

Then, we have

E sup
Q∈G1,O∈G2

∣∣∣1
n

n∑
i=1

ℓQ,O(X i , Ai , Ri , X i+1)

− EℓQ,O(X i , Ai , Ri , X i+1)

∣∣∣
≤ CB,η,a,ᾱ,Rmax

(
WD

√
log(WD)

)
n−

η

2(1+η)

√
log n

where the inequality holds since the VC-dimension of the
ReLU neural networks F satisfies

c1 ·W2D2 log(W) ≤ VCF ≤ c2 ·W2D2 log(WD)

where c1, c2 > 0 are two universal constants, as detailed
in [77].

□

G. Preliminary Lemma for Theorem 2

We first give a lemma on representing ReLU FNN with
ReLU ResNet.

Lemma A.3 : Given m ∈ N, let f : Rm
→ Rm with width

W and depth L , then there exists a residual block g : Rm
→

Rm with width 3W and depth L + 1 such that f(x) = g(x).
Moreover, there exist absolute constants c1, c2 > 0 such that,
for any f ∈ FW,D,B, there exists a function g ∈ F K

c1W,c2D,B
such that g(x) = f (x).

Proof: Note the fact that ρ ◦ ρ(x) = ρ(x) and ρ(x) −

ρ(−x) = x , we know that f(x) − x can be represented by a
ReLU FNN with width 3W and depth L + 1. Then, by the
definition in (1), f(x) = x + (f(x) − x) can be represented by
a residual block g with depth L + 1 and width 3W .

Let f ∈ FD,W,B be defined as

f (0)(x) = x

f (ℓ)(x) = ρ
(

Aℓ f (ℓ−1)(x) + bℓ

)
for ℓ = 1, . . . ,D − 1

f (x) := f (D)(x) = AD f (D−1)(x) + bD.

Recall that g : Rd
→ R implemented by a ReLU ResNet with

K − 1 residual blocks is defined by

g(0)(x) = x

g(k)(x) = ρ(AkRk(gk−1(x)) + bk), k = 1, . . . , K − 1
g(x) := g(K )(x) = AK g(K−1)(x) + bK .

We can reformulate f into g by setting K = D and choosing
Rk(x) = x, k = 1, . . . ,D. □

H. Proof of Theorem 2

Proof: By Lemma A.3 and [60, Theorem 3.3], for any
W, L ∈ N, there exists a function f̃ belonging to the ReLU
ResNet class F K with width W ≍ (s +1)2ds+1W

⌈
log2(8W )

⌉
and depth D ≍ (s + 1)2L

⌈
log2(8L)

⌉
such that

| f (x) − f̃ (x)|

≲ B(s + 1)2ds+(ζ∨1)/2⌊(W L)2/d⌋−ζ

for all x ∈ [0, 1]
d
\�([0, 1]

d , S, δ). Here,

�([0, 1]
d , S, δ) = ∪

d
i=1

{
x = [x1, x2, . . . , xd ]

⊤
:

xi ∈ ∪
S−1
k=1 (k/S − δ, k/S)

}
where S = ⌈(W L)2/d

⌉ and δ ∈ (0, 1/(3S)].
□

I. Proof of Theorem 3

Proof: By Theorem 2, for any f ∗
∈ Hζ

(
[0, 1]

d
)
,

there exists a function φ0 ∈ F K with width W ≍ (s +

1)2ds+1W⌈log2(8W )⌉ and depth D ≍ (s + 1)2L⌈log2(8L)⌉

such that∣∣ f ∗(x) − φ0(x)
∣∣

≤ 18B(s + 1)2ds+(ζ∨1)/2⌊(W L)2/d⌋−ζ

for x ∈ ∪θ Q̃θ . Recall that

Q̃θ :=

{
x = (x1, x2, . . . , xd) :

xi ∈

[θi

S
,
θi + 1

S
− δ · 1{θi <S−1}

]
, i = 1, 2, . . . , d

}
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with θ = (θ1, θ2, . . . , θd) ∈ {0, 1, . . . , S − 1}
d , and δ being

an arbitrary number satisfying 0 < δ ≤ 1/3S. Then, we can
conclude that the Lebesgue measure of [0, 1]\Q̃θ is no more
than d Sδ. This can also be arbitrarily small if δ is arbitrarily
small. Since µ is absolutely continuous with respect to the
Lebesgue measure, we have

sup
v∈U2

inf
O∈G2

∥O − v∥L1(µ)

≤ 18B(s + 1)2ds+(ζ∨1)/2⌊(W L)2/d⌋−ζ

inf
φ∈G1

∥Qπ j − φ∥L1(µ)

≤ 18B(s + 1)2ds+(ζ∨1)/2⌊(W L)2/d⌋−ζ
.

By Lemma 2 and Theorem 1, it yields that

E
(
LU2(Q j ) − LU2(Qπ j )

)
≤ CB,η,a,ᾱ,Rmax

(
WD

√
log(WD)

)
n−

η

2(1+η)

√
log n

+ (4B + 2Rmax) · 18B(s + 1)2ds+(ζ∨1)/2⌊(W L)2/d⌋−ζ

+ B(1 + cµ,µ(1)) · 18B(s + 1)2ds+(ζ∨1)/2⌊(W L)2/d⌋−ζ
.

Moreover, setting width W = O
(
(n

η

1+η )
d

4(d+2ζ ) log n
)

and depth

D = O
(
(n

η

1+η )
d

4(d+2ζ ) log n
)

, then it follows that:

E
(
LU2(Q j ) − LU2(Qπ j )

)
≤ CB,s,Rmax,B,η,a,ᾱ,cµ,µ(1) ·

[
ds+(ζ∨1)/2(n

η

1+η )
−ζ

d+2ζ (log n)3
]

where CB,s,Rmax,B,η,a,ᾱ,cµ,µ(1) is a constant depending on
B, s, Rmax,B, η, a, ᾱ, cµ,µ(1). □

J. Proof of Theorem 4

Proof: Recall that

LU2(Q) − LU2(Qπ j ) = sup
O∈U2

∣∣Eµ(O(Q − T π j Q))
∣∣.

Moreover, the deep neural networks F K have the capacity to
approximate the Hölder class Hζ . Consequently, by leveraging
Theorem 2, Theorem 3, and Assumption 1, we have

E∥Q j − T π j Q j∥
2
L2(µ)

≤ E
(
LU2(Q j ) − LU2(Qπ j )

)
≤ CB,s,Rmax,B,η,a,ᾱ,cµ,µ(1) ·

[
ds+(ζ∨1)/2(n

η

1+η )
−ζ

d+2ζ (log n)3
]
.

By Proposition 1, we have

E
∥∥Q∗

− QπJ
∥∥

L2(ν)

≤
γ C1/2

ν,µ · CB,s,Rmax,B,η,a,ᾱ,cµ,µ(1)

(1 − γ )2

×

[
ds/2+(ζ∨1)/4(n

η

1+η )
−ζ

2d+4ζ (log n)3/2
]

+
2γ

(1 − γ )2 · γ J/2 Rmax.

□
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