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1 | INTRODUCTION

The rapid growth of biomedical big data has led to greater
opportunities for the deployment of modern data-driven
technologies such as machine learning (ML) [1]. ML
techniques have achieved substantial success in process-
ing various types of data and performing diverse tasks in
the context of healthcare [2-4]. However, the effective
exploitation of healthcare data by ML models necessitates
the rigorous configuration of every part of the ML pipe-
line, which relies heavily on specialized technical
knowledge and extensive effort.

To help professionals with borderline expertise in
data science to better use ML techniques, Automated ML
(AutoML) has emerged as a prospective solution. The
objective of AutoML, as defined by Yao et al. [5], is to
allow computer programs to replace human tuning in the
process of determining all or a part of model configura-
tions while maintaining good performance and high
computational efficiency. Configurations in this context
refer to all factors that are specified prior to model
training and affect the final performance, including input
data, feature sets, hyperparameters, and model architec-
tures. Therefore, a complete AutoML pipeline encom-
passes the automation of data preparation, feature
engineering, and model development [6].

AutoML techniques in the ML pipeline cater to
various levels of coding proficiency. For example, so-
phisticated AutoML methods such as NASLib [7], which
require advanced programming knowledge, aim to pro-
vide greater flexibility for experienced ML engineers.
AutoML software packages such as auto-sklearn [8] focus
primarily on model development, that is, algorithm se-
lection and hyperparameter optimization, targeting users
with mediate coding skills. Additionally, commercial
AutoML platforms such as Google Cloud's AutoML

demonstrate the advantages of AutoML over classic ML. Then, we summa-
rized interpretation methods: feature interaction and importance, data
dimensionality reduction, intrinsically interpretable models, and knowledge
distillation and rule extraction. Finally, we detailed how AutoML with inter-
pretation has been used for six major data types: image, free text, tabular data,
signal, genomic sequences, and multi-modality. To some extent, AutoML with
interpretation provides effortless development and improves users' trust in ML
in healthcare settings. In future studies, researchers should explore automated
data preparation, seamless integration of automation and interpretation,
compatibility with multi-modality, and utilization of foundation models.

automated machine learning, explainable machine learning, health informatics

system and H2O Driverless artificial intelligence (AI)
offer no-coding solutions, featuring user-friendly in-
terfaces and rapid convergence capabilities. Table 1 pro-
vides an overview of the toolkits developed by leading
companies.

In healthcare, the extensive application of ML signifi-
cantly amplifies the advantages of implementing AutoML
approaches. It enables healthcare professionals with
borderline ML knowledge to build high-quality models
using a fully automated pipeline [9] and further addresses
privacy concerns without sharing data with external ML
engineers. AutoML systems effectively fill the gap between
the lack of ML expertise among healthcare practitioners
and the need for data analytics based on ML models [10].
AutoPrognosis [11] describes an end-to-end diagnosis and
prognosis modeling framework that helps healthcare
professionals leverage clinical data for risk prediction
across diverse clinical settings. Additionally, AutoML im-
proves the efficiency of ML engineers by automating
tedious and time-consuming tasks such as data pre-
processing [12]. For example, nnU-Net [13] introduces a
self-configured biomedical image segmentation method
that automates the conversion of raw image data into
representative structured features.

Although AutoML systems help both healthcare pro-
fessionals and ML engineers to process medical data
effortlessly, the interpretability of these systems should be
improved to boost confidence in the reliability of the
generated ML models [14]. Given the potentially serious
consequences of medical Al failures, greater demands are
being placed on the interpretation of ML models in clinical
decision-making to fulfill both medical validation and
regulatory requirements. Thus, in contrast to conventional
AutoML systems primarily centered on ML development,
AutoML with interpretation aligns more closely with the
real-world requirements in healthcare settings [15].
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TABLE 1 Overview of AutoML toolkits from leading companies.

https://auto.gluon.ai/stable/index.html

https://aws.amazon.com/sagemaker/canvas/

https://developer.apple.com/machine-learning/create-ml/

https://cloud.google.com/vertex-ai?hl=en

https://www.ibm.com/products/watson-studio/autoai

https://www.ibm.com/products/watsonx-ai

https://research.facebook.com/publications/looper-an-end-to-end-ml-platform-for-

Company Toolkit Modality Website
Amazon  AutoGluon Multi-
modality
SageMaker Multi-
modality
Apple Create ML Multi-
modality
Google Vertex Al Multi-
modality
IBM AutoAl Tabular data
watsonx.ai Multi-
modality
Meta Looper Multi-
modality product-decisions/

Microsoft Azure machine learning Multi-

modality #overview

NVIDIA TAO Multi-
modality

https://azure.microsoft.com/en-us/products/machine-learning/automatedml/

https://developer.nvidia.com/tao-toolkit

Note: The companies are listed alphabetically for ease of reference.

Because AutoML systems with interpretation are
fundamental to facilitating the clinical adoption of Al
technologies, we conducted this review to gain insight
into how they empower the health community by
lowering the entry barrier and enhancing the credibility
of ML algorithms. In recent years, several researchers
[6, 9, 10, 16-19] have reviewed the development and
application of either AutoML or ML interpretations.
However, none have provided a systematic and in-depth
summary of AutoML with interpretation, particularly its
applications in healthcare. In our review, we aim to
integrate existing research practices by categorizing data
modalities, AutoML techniques, and interpretation
methods to acquire a comprehensive understanding of
AutoML with interpretation in healthcare and inspire
future research topics. The purpose of the categorization
is to provide practitioners with an insight into how
various AutoML with interpretation systems have been
implemented in different medical tasks.

The promising application of AutoML with interpre-
tation in healthcare necessitates a systematic review of
cutting-edge research to bridge the gap between technical
innovation and practical application. We envisage that
this review will empower healthcare practitioners by
providing well-organized and referable information about
AutoML with interpretation systems, and further facili-
tate the real-world deployment of ML systems in diverse
healthcare settings.

2 | METHODS

2.1 | Search strategy and data sources
We conducted a systematic review that encompassed
both methodology and application studies on AutoML
with interpretation for healthcare. We performed a
literature search on four databases: MEDLINE, EMBASE,
Web of Science, and Scopus. Given that some of the latest
ML research is often presented at conferences and may
not be included in these four databases, we also searched
for research papers in the proceedings of seven relevant
and prestigious ML conferences: AAAI, ACL, ICLR,
ICML, IJCAI, KDD, and NeurIPS. The searched terms in
the medical domain were (“medical” OR “clinical” OR
“health” OR “healthcare” OR “medicine”). We also
added the terms (“ML” OR “deep learning” OR “AI”) to
limit the search to ML-based studies, and (“automated”
OR “automatic”) AND (“interpretable” OR “explainable”
OR “interpretability”) to include studies on AutoML with
interpretation. We restricted our search to papers pub-
lished before September 1, 2023.

2.2 | Inclusion and exclusion criteria

We followed the Preferred Reporting Items for Systematic
reviews and Meta-Analyses guidelines [20] to conduct the
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systematic review. We included all papers published in
English that used AutoML with interpretation to perform
healthcare tasks. We excluded review articles, workshop
papers, duplicate records, and studies not relevant to
AutoML with interpretation or healthcare. Each article
was independently screened by at least two reviewers,
and, if ambiguous, discussed with the corresponding
author to reach a consensus.

2.3 | Data analysis

Table 2 presents our evaluation and summary of the
papers from three aspects: AutoML techniques, inter-
pretation methods, and target data types. For AutoML
techniques, we identified three main research directions:
automated data preparation, automated feature engi-
neering, and automated model development [9]. For
interpretation methods, we summarized from four an-
gles: knowledge distillation and rule extraction, intrinsi-
cally interpretable models, data dimensionality
reduction, and feature interaction and importance [18,
19]. For target data types, we classified the included ar-
ticles into six categories: image, free text, tabular data,
signal data, genomic sequence, and multi-modality.
Additionally, Table 2 lists specific applications and per-
formance advantages of AutoML for users focused on
specific tasks.

3 | RESULTS

Figure 1 illustrates the literature selection process for this
systematic review. Our initial search yielded 2730 papers.
We removed 1378 duplicates; hence, we used 1352 re-
cords for title and abstract screening. We excluded 1184
records because they were either not relevant to health-
care (n = 331) or did not use AutoML methods (n = 722);
were conference papers that were not from listed con-
ferences (n = 9); were not research articles (n = 121); or
were not in English (n = 1). As a result, we included 168
articles for full-text review. Finally, we included 118 pa-
pers for systematic review. Figure 2 shows the rising
trend of publications in AutoML with interpretation for
healthcare and indicates that image and tabular data
constituted the major subsets for all included publica-
tions. In this section, we first summarize AutoML tech-
niques. Then, we elaborate on the ML interpretations
used in the included articles. Finally, we summarize the
representative AutoML with interpretation systems for
different data modalities.

3.1 | AutoML techniques
For AutoML techniques, we followed the previous clas-
sification criteria [9] based on three stages of the ML
pipeline: automated data preparation (n = 18), automated
feature engineering (n = 95), and automated model
development (n = 31). Figure 3 provides a comprehensive
overview and Table 3 offers a detailed description of the
ML components automated by AutoML within the
healthcare sector. Specifically, data preparation refers to
the process of collecting and processing raw data into a
suitable format for downstream ML stages. AutoML has
been leveraged to deal with processes such as automatic
data collection [96, 106], noise filtering [27, 28, 44, 119],
missing value imputation [87, 95, 110, 126, 133], data
imbalance compensation [87, 90, 102, 140], data
normalization [44], redundant data removal [53], outlier
removal [133], sample clustering [135], data pattern shift
detection [137], and continuous variable binning [109].
Feature engineering describes the process of creating new
features or modifying existing features to enhance ML
performance and AutoML has been used to facilitate
automatic feature generation [21, 60, 61, 63, 64, 66, 63, 71,
72,76, 77, 79-81, 103, 120, 122, 123], selection [70, 72, 80,
98, 99, 101, 102, 105, 108, 121, 124, 127, 135, 141], and
transformation [67, 78, 107, 138, 142, 143]. Model devel-
opment refers to the process of creating, training, and
optimizing a model based on either the formatted data or
modified features. AutoML has also been used for the
selection of main backbone models [65, 86, 88, 89, 91-93,
125, 144], the tuning of model-specific parameters [24, 98,
100, 119, 126, 128, 136], and the optimization of model-
specific [21, 24, 40, 59, 74, 86, 89-93, 102, 110, 122, 124,
131, 138, 144] or agnostic hyperparameters [24, 62, 69, 95].
Additionally, we conducted a comparative analysis of
commonly used metrics between AutoML and the most
competitive baseline in the last column of Table 2, which
demonstrated that AutoML outperformed conventional
ML solutions across various data types. Specifically,
slashes (“/”) divide AutoML performance and the most
competitive baseline performance. Hyphens (“-”) indicate
that specific results were not reported in the original
papers. Ampersands (“&”) separate the same evaluation
metrics across different tasks or experimental settings
and commas (“,”) separate different evaluation metrics.
We retained all measurement units and decimal digits
from the original papers. We did not report results from
studies in which visual performance comparisons were
made without quantitative data or from studies involving
an excessive number of tasks because of content
constraints.
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2 | NARBRIHE
;&:f Furthermore, we implemented a toy example to
o 2 compare AutoML solutions with classic ML models based
g E % on 44 918 de-identified patients from BIDMC critical care
:o:’ o N % units [145]. The prediction target was in-hospital mor-
o~ .
g % g S £ tality (8.81% across all patients) and the candidate vari-
3 .
58 & 8 a ables were age, temperature, platelet, glucose, sodium,
< g = o . . o
S s g E:) g lactate, potassium, bicarbonate, heart rate, respiration
E’ rate, hematocrit, creatinine, hemoglobin, chloride, anion
g gap, white blood cells, blood urea nitrogen, systolic blood
5 N = pressure, diastolic blood pressure, mean arterial pressure,
§n§ g é and peripheral capillary oxygen saturation [146]. We
2 g s 3 & 3 randomly divided the entire dataset using the ratio 6:2:2
8 = B é 2 3 for model training, validation, and testing. For traditional
7] < '@ o . .
= % g 8 g = A ML models, we optimized the hyperparameters using
o & AE R § Z grid search based on the area under the receiver oper-
- g ‘g ating characteristic curve (AUROC) evaluated on the
g = o g o validation set. For AutoML solutions, we automatically
3 8 S G ¥|s¢ . ) o
=8 2 S= ok 3 determined the hyperparameters using their inherent
5 2 = § § & g f algorithms; therefore, their training data included both
Q - o
S 8§ A a5 % El s g the training and validation sets. Figure 4 presents the
= g 8 p
0 23 AUROC results on the unseen test set, which demon-
g & strates that the two AutoML solutions of AutoGluon
P!
T 5 = [147] and TPOT [124] statistically significantly out-
;o’ Z § ) performed the conventional ML models random forest
a Z = [148], gradient boosting machine (GBM) [149], and K-
:5:3‘ o 5 = 9 § nearest neighbor [150]. We made the code open access to
2 5 g2 2 enable reproducibility and serve as an exemplary case
8 & e8| o=
o § S8 B8 § £5 study [151].
55 55 22 5[5
28 S ETS 282|573
28 A5 2 MBS E| &
< £ 5z 3.2 | Interpretation methods
Q 9]
2 g =5
“ —
g = 9 f‘ £ Regarding the ML interpretations, we grouped them into
£33 5 5 g g P group
[ . . .
3 'é 3 - g B four categories based on the commonly adopted criteria
':) 8 5 [18, 19]: feature interaction and importance (n = 63), data
§ £ S g dimensionality reduction (n = 27), intrinsically inter-
g S Eé % E pretable models (n = 14), and knowledge distillation and
g g & < g rule extraction (n = 14).
) . . . e
<& 9 Re £ g Feature interaction entails quantifying the effect of
g ,E = 5 one feature on another, considering their mutual influ-
- Q . . . .
g g “;’ § ence, whereas feature importance involves discerning the
o . . . . .
§ ,3 5 3 8 significance of input features in shaping the output tar-
- ]
<< & > 2 g gets of ML models [61, 63, 67, 72, 76, 78-81, 98, 103, 108,
£3 g & 122, 125, 136]. In the healthcare domain, the alignment of
= E 3 g feature interaction and importance with clinical expertise
on
S 5 . = g § g enhances healthcare professionals’ trust in ML outputs
9 — o .2 . . .
E & &° Y 85§ [152]. However, when feature interaction and importance
g - © é% 8 diverge from established knowledge, ML models may
g § E E > g encounter overfitting issues. Remarkably, such disparities
~ £ 9 occasionally reveal previously unidentified bio-
2 - o % o 5 :g g markers [153].
2 = =3 = £ 5 Data dimension reduction refers to the use of a
= = = B = <9 subset of the most informative raw inputs or modified
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PubMed
(n=544) (n =595) (n=633)

Embase Web of Science Scopus
(n=403)

AAAI IJCAI
(n=248) (n=62)

ACL NeurlPS ICML KDD
(n=30) (n=10) (n=31) (n=22) (n=152)
\
Y
Papers after preliminary search by key words
(n=2730)
1378 Duplicate records excluded
Papers remained to be screened
(n=1352) 1184 Records excluded

Not healthcare (n = 331)
Not AutoML (n = 722)

Not research article (n = 121)
Workshop papers (n = 9)

(n = 168)

[ Studies remained to be full-text screened

] Not English papers (n = 1)

50 Records excluded
* Not healthcare (n =12)

*  Not AutoML (n = 20)
«  Without interpretation (n = 18)

Articles finally included

[ (n=118)

)

FIGURE 1 Literature selection flow for automated machine learning with interpretation in healthcare.

30 Data type

Image

Free text

Tabular data

Signal

Genomic sequence
Multi-modality

All

Number of publications

5 ‘
» Watatain dud II. II.. 1 |||
2022

| |
2016 2017 2018 2019 2020 2021 2023
Year

FIGURE 2 Timeline of publications on automated machine
learning with interpretation for healthcare since 2016. Our search
concluded on September 1, 2023, which accounts for the lower
number of included publications published in 2023 compared
with those published in 2022.

features in model development and subsequent ana-
lyses [61, 62, 64-66, 68, 71, 73, 76, 102, 106, 108, 120,
121, 124, 126, 127, 137]). In the context of high-
dimensional samples, data dimension reduction helps
the model to focus on salient features, thereby simpli-
fying model complexity and enhancing its interpret-
ability [154]. Additionally, data dimension reduction

enables the effective graphical visualization of data
distributions within a low-dimensional space [155].
This visualization reveals latent data patterns that can
be integrated into subsequent model development,
thereby enhancing both model performance and inter-
pretability [18, 19].

Intrinsically interpretable models represent the
application of transparent models to solve prediction
problems [18] such as logistic regression [101, 111, 135,
140, 141, 156, 157], decision tree [25, 54, 70, 105, 137],
fuzzy rules [41, 110, 119], and mathematical solid deci-
sion functions [40, 69, 107]. Intrinsically interpretable
models feature simple architectures or algorithms,
thereby fostering a clear understanding of the relation-
ship between inputs and outputs [18, 19]. These models
may not consistently achieve predictive performance
comparable with that of their black box counterparts, but
within high-stakes tasks that impact lives, model trans-
parency is substantially more important than marginal
performance superiority [158].

Knowledge distillation and rule extraction refer to the
processes of simplifying intricate ML models into either
streamlined models or human-comprehensible rules,
respectively [99, 100, 104, 128, 138]. Knowledge distilla-
tion is a technique designed to train simple student
models by mirroring the behavior of complex teacher
models while preserving model performance [159]. Post
distillation, student models demonstrate reduced
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Healthcare Data Data Preparation

e B — - —_—
—
L

Feature Engineering Model Development

[
RTARERTE |
¥ T

pel | by

—

Components Automated by AutoML

[EdAutomatic Collection
[EANoise Filtering
[EdMissing Value Imputation
Imbalance Compensation
EdNormalization
EdRedundancy Removal
E4outlier Removal
EdPattern Shift Detection

[EdFeature Generation [Backbone Selection

EdFeature Selection EdModel-specific Parameters Tuning

[EdFeature Transformation, etc. [ZModel-specific Hyperparameters
Optimization
EdModel-agnostic Hyperparameters
Optimization, etc.

Edcontinuous Variable Binning, etc.

FIGURE 3 Overview of the ML components automated by automated ML within the healthcare sector. This figure is reproduced from

[139] with permission. ML, machine learning.

TABLE 3 Description of ML components automated by AutoML in the healthcare sector.

Stages Operations

Automated data preparation Automatic data collection
Noise filtering

Missing value imputation
Data imbalance compensation
Data normalization
Redundant data removal
Outlier removal

Samples clustering

Data pattern shift detection
Continuous variable binning
Automated feature engineering Automatic feature generation
Feature selection

Feature transformation
Automated model development Backbone model selection

Model tuning

Hyperparameter optimization

Description

Collecting raw data in an automated manner.

Removing inherent noise from the data.

Filling in missing values in the dataset.

Addressing and compensating for imbalanced classes in the data.
Scaling data to a standard range.

Eliminating duplicate or unnecessary data entries.
Identifying and removing anomalous data points.

Grouping similar data samples together.

Detecting changes in data patterns over time.

Converting continuous variables into discrete bins.

Creating features automatically using algorithms.

Choosing the most relevant features for modeling.
Transforming features to a more suitable form for modeling.
Choosing the main model architecture.

Adjusting model-specific parameters for better performance.

Finding the best hyperparameters for better performance.

complexity, which renders them more comprehensible to
humans and potentially bolsters transferability [160].
Rule extraction yields human-understandable rules
because each rule inherently provides a logical explana-
tion for its decision [161]. Based on these interpretation
methods discussed above, healthcare practitioners can
discern potential errors and ascertain the reliability of ML
models [162].

3.3 | Data modalities

In this section, we discuss AutoML with interpretation
for different types of healthcare data: image (n = 53), free
text (n = 8), tabular data (n = 29), signal (n = 12),
genomic sequence (n = 6), and multi-modality (n = 10).
Figures 5 and 6 present the summary statistics of AutoML
and interpretation techniques in the included
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AutoGluon

TPOT

Random forest

ML model

Gradient boosting machine

K-nearest neighbour

0.0 0.2 0.4 0.6 0.8
AUROC

FIGURE 4 AUROC comparison of automated ML solutions
versus conventional ML methods for real-world in-hospital
mortality prediction. AUROC, area under the receiver operating
characteristic curve; ML, machine learning.

publications. For AutoML techniques, automated feature
engineering dominated in five out of the six modalities;
for the genomic sequence, automated model development
was more prevalent. Regarding interpretation methods,
feature interaction and importance were widely used in
all modalities except the genomic sequence, where data
dimensionality reduction was the preferred approach. For
each data modality, we focused on the principal tasks
addressed by AutoML with interpretation systems and
elaborated on them using representative studies.

3.3.1 | Image

Medical images are essential diagnostic tools for a spec-
trum of diseases [66, 163]. AutoML with interpretation
enables clinicians with little coding experience [164] to
perform a spectrum of healthcare tasks, such as retinal-
vessel caliber measurement [61], breast cancer classifi-
cation [60], and thoracopathy lesion localization [165].
Based on whether they transform raw pixels into useable
features, current systems can be classified into two cate-
gories: (1) two-step systems that consist of feature
extraction and subsequent modeling [64, 66, 68, 70, 71,
166]; and (2) end-to-end systems without the explicit
extraction of intermediate features [67, 69].

Two-step systems first extract image features from
raw pixels and build up the subsequent analysis based on
the extracted features. Various methods have been pro-
posed to automate the extraction of image features,
including both commercial software and homemade
models. Yin et al. [68] applied the commercial software
CellProfiler [167] and ImageJ [168] to extract individual
and textual features, and then integrated domain
knowledge from pathologists to shortlist useful features.
PDE [66] has also demonstrated its effectiveness in
automatic feature extraction. By contrast, Yan et al. [64]

developed a feature extraction tool and demonstrated the
effectiveness of their homemade model through a com-
parison with human clinicians. With diverse off-the-shelf
solutions, multiple tools have been combined to improve
the robustness of extracted features [169]. In these sys-
tems, the most common interpretation is feature inter-
action and importance that results from mapping the
extracted features back to the original images and high-
lighting relevant pixels or patches [64, 71]. Additionally,
in some systems, inherently interpretable models are
applied based on the extracted features to improve model
interpretations [70, 166]. For instance, Wu et al. [70]
implemented a decision tree to mimic how radiologists
interpret the extracted features. Moreover, knowledge
distilled from an inherently interpretable model, such as
a decision tree, can serve as diagnostic guidelines in the
future [166].

Different from two-step methods, end-to-end systems
process image inputs without the implicit extraction of
intermediate features and output predictions of interest
in addition to useful interpretations [170]. In the task of
compressed sensing for functional magnetic resonance
imaging (fMRI), Lecouat et al. [69] automated the ar-
chitecture design and parameter training of artificial
neural networks (ANN) based on convex optimization
and non-cooperative games [171]. To enhance interpret-
ability, they introduced a decision function with sparse
parameters and clear mathematical formulas. Wang et al.
[67] developed a classic end-to-end system for congenital
heart disease classification, including automatic data
clustering and model parameter tuning. Similar to two-
step systems, their system highlighted important areas
on the input image toward ML predictions and used these
sub-areas as an interpretation. Although end-to-end sys-
tems provide more ceaseless automation and are thus
more user-friendly, users should choose the appropriate
systems based on whether they need the intermediate
features for further modeling and interpretation [68].

3.3.2 | Free text

Medical text records various patients’ information, such
as hospitalization descriptions, diagnoses, and treatments
[172]. Accurate mining of such information can sum-
marize patients' former health conditions and guide
subsequent interventions [173]. A fundamental task
addressed by AutoML with interpretation is the coding of
unstructured raw clinical notes into structured medical
codes, such as the international classification of diseases
(ICD). Similar to the two-step systems adopted in medical
image analysis, this process extracts standard intermedi-
ate features from text records, and these intermediate
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FIGURE 5 Summary statistics of automated machine learning techniques for the included publications targeting each data modality:
(a) image; (b) free text; (c) tabular data; (d) signal; (e) genomic sequence; and (f) multi-modality.

features facilitate various subsequent analyses [80].
Conventionally, such a transformation was conducted
manually [79, 80], but has been gradually replaced by
either commercial software or home-made models to save
time and eliminate errors. For example, commercial
software called clinical text analysis and knowledge
extraction system has been demonstrated to be an effec-
tive method for mapping trauma encounter text to
structured medical concepts [75]. Additionally, re-
searchers have demonstrated that homemade models are
useful for generating informative feature vectors from
free text and subsequently projecting these vectors to
medical codes [74, 76, 77, 80, 81]. Duarte et al. proposed a

framework similar to residual learning, wherein word
embeddings are processed using a gated recurrent unit
(GRU) to generate representations [81]. These represen-
tations are then concatenated with the initial embeddings
to prevent information loss and enhance model accuracy.
Additionally, Atutxa et al. demonstrated that beyond
classic recurrent neural networks (RNN) such as GRU,
convolutional neural networks (CNN) and transformers
are also effective for mapping diagnostic text to ICD
codes [80].

Across all analytical tasks that use medical text, the
attention mechanism is the most important backbone. It
is valued not only because of its superior performance in
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FIGURE 6 Summary statistics of interpretation techniques for the included publications targeting each data modality: (a) image;
(b) free text; (c) tabular data; (d) signal; (e) genomic sequence; and (f) multi-modality.

the attention-based transformer [174] but also because of
its inherent weights that provide feature interaction and
the importance of each part in the input text [76, 78, 81].
For instance, in the sentence “He should undergo
chemotherapy when he is diagnosed before his cancer
cells metastasize,” attention detects that “his cancer cells
metastasize” is a crucial component in the automatic
determination of the patient's cause of death [76]. In
recent studies, researchers introduced the hierarchical
attention mechanism, which uses the various types of
attention and interprets feature representations on
different levels. The hierarchical label-wise attention
network [77] applies two-level attention mechanisms at
the word-level and sentence-level for selecting important
words and sentences in each paragraph, respectively.

3.3.3 | Tabular data

Tabular data, the most common data format in health-
care, includes structured demographic data, vital signs,

lab tests, diagnoses, treatments, and procedures [1]. Un-
like pixels in images and words in free text, raw features,
such as gender in tabular data, typically have clinically
explainable meanings, therefore feature engineering be-
comes the focal point of automation and interpretation
for AutoML systems. It should be noted that the proposed
methods for tabular data in the included studies can also
be applied to structured information derived from un-
structured healthcare data, as illustrated in the two-step
methods above. In this section, we focus on studies in
which researchers explored raw inputs in a structured
tabular format.

Traditional feature engineering for tabular data is
labor-consuming and costly. It requires ML engineers'
intuition and domain knowledge [107]. By contrast,
automatic and interpretable feature engineering auto-
matically performs transformation and aggregation
across candidate features in a transparent manner. For
example, Khurana et al. [107] proposed automatic feature
selection and transformation based on intrinsically
interpretable transformation graphs, and found that the
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modified features reduced ML errors. Their work
demonstrated the utility of intrinsically interpretable
models in feature engineering. AutoScore [141, 156]
further exploits the full potential of the intrinsically
interpretable clinical score as the backbone for predicting
parameters such as the in-hospital mortality rate [141,
156], survival time [157], and rare event occurrence [140].
Although complicated ML models have dominated the
analysis of high-dimensional data, for tabular data with a
limited number of features, transparent features and
intrinsically interpretable models are still preferred in
practice [175, 176].

In addition to feature engineering, data preparation
(pre-processing) [106] and model development [98] have
been automated using AutoML with interpretation sys-
tems. Ikemura et al. [98] automated the entire ML life-
cycle using commercial software [177] and interpreted
models through feature interaction and importance
generated by Shapley additive explanations (SHAP) [178].
In addition to commercial software such as H20O.ai, re-
searchers have also developed comprehensive home-
made systems for mining clinical tabular data. mAML
[102] is an example that includes automated imbalance
compensation [179], feature selection [180], and hyper-
parameter optimization [181]. Specifically, imbalance
compensation is addressed using RandomOverSampler
[179], SMOTE [182], and ADASYN [183]. Feature selec-
tion methods include the distal DBA method [184], HFE
[180], and mRMR [185]. Hyperparameter optimization is
performed using a grid search [181].

3.3.4 | Signal data

Signal data refers to electrical or mechanical signals
collected from physiological sensors to monitor the
functioning of the human body and make informed
intervention decisions [186]. ML has been applied to
identify the sophisticated relationships between various
signal inputs and clinical events. AutoML with interpre-
tation further automates and improves the reliability of
this analytical process. A promising research direction
involves transforming signal data into two-dimensional
representations and subsequently applying image-
related methods [118]. However, in this section, we
focus on these techniques specifically designed for signal
data to avoid confusion. Specifically, Fuchs et al. [119]
used an intrinsically interpretable fuzzy model to analyze
tremor signals, in which the wrapper approach [187] and
pyFUME [188] automate feature selection and model
development, respectively. Kim et al. [120] proposed an
automated channel selection method based on CNN for
analyzing  electroencephalograms. = They  further

elucidated neurophysiological feature interaction and
importance by correlating the selected channels with
specific brain regions. In addition to the end-to-end ar-
chitecture, Tison et al. [122] devised a two-step frame-
work for predicting distinct heart diseases. Initially, the
system autonomously generated features using a CNN-
hidden Markov model from electrocardiograms (ECG).
Subsequently, these features were input into a GBM for
predicting the target diseases. Finally, the system calcu-
lated the interaction and importance of segments within
ECG as the model interpretation. A similar strategy was
implemented by Jahmunah et al. [116] in which ECG
beats were first extracted using an off-the-shelf algorithm
and then input into the downstream DenseNet [189] for
myocardial infarction detection. Han et al. [114] con-
ducted an extensive investigation into the use of AutoML
for diagnosing myocardial infarction. On top of clinical
standards, diagnostic guidelines, and DenseNet-based
signal morphology, they developed an interpretable
diagnostic system based on production rules.

3.3.5 | Genomic sequence

Genomic sequence data [190, 191] indicate the precise
order and arrangement of fundamental genetic elements,
such as nucleotides (adenine, thymine, cytosine, and
guanine), within DNA sequences (DNA-seq). In addition
to DNA-seq, other common genomic sequences include
RNA sequences (RNA-seq), Deoxyribonuclease I hyper-
sensitive site sequences (DNase-seq), micrococcal
nuclease digestion with deep sequencing (MNase-seq),
and chromatin immunoprecipitation sequences (ChIP-
seq). These sequences encapsulate the detailed composi-
tion of genetic material, thereby offering fundamental
information that is essential for comprehending potential
associations between genetic patterns and diseases [192].
The principal application of AutoML with interpretation
in genomic sequence data mining is to identify genomic
sites of interest from the entire genomic sequence. Tra-
belsi et al. [125] proposed deepRAM for identifying pro-
tein binding sites in DNA and RNA-seq based on a hybrid
architecture of CNN and RNN. The hyperparameters
were automatically tuned through a combination of
random search and cross-validation. Sequence motifs,
which represent patterns with biological significance,
were extracted from the initial CNN layer to improve
interpretability [125]. In addition to genomic sites,
AutoML has been applied to the data mining of gene
expression data. Shen et al. [127] introduced elastic net-
based [193] automatic feature selection to a support
vector machine (SVM), which demonstrated that feature
selection boosted both model performance and
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interpretability. In addition to classic ML models such as
SVM, the transformer has gradually gained popularity in
genomic sequence analyses, such as automatic prokary-
otic genome annotation [123]. In addition to inherent
attention in the transformer for acquiring feature inter-
action and importance, data dimensionality reduction
[124] and rule extraction [128] are used to improve model
interpretability.

3.3.6 | Multi-modality
Multi-modality refers to the simultaneous use of more
than one data type discussed above to gain a compre-
hensive understanding of a patient's condition [194]. The
integration of these complementary modalities enhances
the overall diagnostic accuracy of ML models [195].
AutoML with interpretation is highly valued for pro-
cessing complex data that involve multiple modalities
[196]. PheVis [135] uses a dictionary-based named entity
recognition tool to extract medical concepts from free text
and then fuses these features with diagnosis codes to
predict rheumatoid arthritis and tuberculosis. The SAFE
algorithm [197] is used for automatic feature selection,
and logistic regression is used for the transparent
modeling of the relationship between shortlisted features
and medical conditions of interest. Similarly, Zhang et al.
[134] combined phenotypical features from free text and
clinical features from tabular data to predict in-hospital
mortality, physiological decompensation, and length of
stay in intensive care units. Compared with features from
a single modality of either free text or tabular data, multi-
modal features have led to statistically significant im-
provements in performance across most evaluated set-
tings. For analogous frameworks within the field of
image modality and signal modality, readers can refer to
Abbas et al. [131] and Wouters et al. [130], respectively.
They used different tools to extract features from image
or signal data and combined them with tabular features,
which achieved state-of-the-art performance. In addition
to integrating different data modalities for predicting
events of clinical interest, the aligned data of different
modalities facilitates the translation of high-dimensional
data into human-understandable formats, such as human
language. KERP [136] was proposed to automatically
generate free text reports for medical images, where
feature interaction and importance, derived from atten-
tion weights, are leveraged to connect generated reports
with original image regions, mimicking the inference
process of a human radiologist.

In addition to the six detailed data categories above,
healthcare data can also be generally classified as spatial
or sequential data. Image data primarily encompasses

spatial information, whereas temporal tabular data, free
text, signal data, and genomic sequence data fall into the
sequential data category. Medical videos represent an
integration of both spatial and sequential data. The
shared characteristics across different modalities pave the
way for a unified architecture that is capable of handling
various data types. Chen et al. [137] designed DASSA for
automatic pattern change detection within any sequential
data and demonstrated its potential for analyzing the
aforementioned sequential data within a unified
framework.

4 | DISCUSSION

As a fundamental component for the successful imple-
mentation of ML in healthcare, AutoML with interpre-
tation reduces the barriers to the full lifecycle of ML
analyses and provides interpretations for healthcare
professionals [198]. Through a systematic literature re-
view, we discussed the methodologies and applications of
AutoML with interpretation for six data types: image, free
text, tabular data, signals, genomic sequence, and multi-
modality. We identified three components that have
been automated in ML analyses: data preparation, feature
engineering, and model development. We summarized
four major interpretation methods: feature interaction
and importance, data dimensionality reduction, intrinsi-
cally interpretable models, and knowledge distillation
and rule extraction. Using Table 2, readers can easily
identify papers in which AutoML with interpretation and
model performance are discussed for their tasks of in-
terest. Despite the promising performance achieved by
AutoML with interpretation systems, several challenges
persist, including the absence of automatic data prepa-
ration, the loose integration of automation and interpre-
tation, and the unmet compatibility with multi-modality.
Additionally, the latest advancements in foundation
models have the potential to revolutionize AutoML with
interpretation.

The first challenge of current AutoML with inter-
pretation systems is the absence of automatic data prep-
aration, as highlighted by the finding that automatic data
preparation was integrated into AutoML with interpre-
tation systems in only 18 out of 118 studies [199]. Real-
world healthcare records contain issues such as missing
values, outliers, inconsistencies, duplicates, and non-
standardization [200]. These issues constitute almost
50%-80% of the overall workload in the complete lifecycle
of ML analyses, underscoring the necessity for automated
data preparation within the infrastructure of future
AutoML systems [201]. Additionally, we suggest that ML
engineers should frequently communicate with
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healthcare professionals during the system design phase
to align their work with real-world demands [202]. For
instance, although complex ANNs have become the pri-
mary choice in some application domains, such as rein-
forcement learning [203], intrinsically interpretable
models are favored in healthcare settings, such as emer-
gency departments [204]. Hence, ML engineers should
ensure the inclusion of common intrinsically interpret-
able models in their systems rather than exclusively
incorporating various ANN architectures.

The second challenge identified in the included pa-
pers is the loose integration of automation and interpre-
tation. In all the included studies, the researchers
addressed interpretation issues to some extent. Re-
searchers should leverage the insights gained from
interpretation to enhance their model automation rather
than merely adding post hoc explanations as the last
module in their frameworks. A good demonstration was
provided by Ikemura et al. [98]. They applied SHAP and
PD plots to analyze the decision processes of their
AutoML models, indicated potential medical knowledge
from their studies, and further reused these findings to
enhance their models. The interaction between model
development and model interpretation can be achieved
by automated feature selection, which reveals feature
importance, offers model interpretation, simplifies model
structure, and potentially enhances model performance
[205]. In addition to automated feature selection, for
future AutoML with interpretation, researchers should
explore the research direction of developing the tightly
knit integration of AutoML and ML interpretations.

Furthermore, the expanding collection of multi-
modalities presents an opportunity for ML engineers to
develop an AutoML with interpretation system that em-
ulates a human clinician's inference process based on
various types of healthcare data [177]. Specifically, when
patients visit a hospital, clinicians and nurses investigate
their former medical records, which are in the form of
text and tabular data. Then, some tests may be conducted
on the feedback image and signal data. Some advanced
treatments involve genome sequencing, which introduces
genetic data into the consultation and diagnosis.
Handling such abundant and complex information re-
quires a great deal of domain knowledge. The scenario
becomes even more intricate when healthcare pro-
fessionals seek to leverage ML, and this is an exact
application scenario for AutoML with interpretation
systems. Given the recent versatile application of the
transformer for the data types image [206], free text [207],
signal data [208], and genomic sequence [209], future
researchers can explore the development of comprehen-
sive AI doctors that use multi-modal healthcare data as
inputs, automate the entire pipeline of data analyses, and

generate results along with interpretations based on a
unified backbone architecture.

Recent advancements in foundation models for text,
image, and multi-modality have the potential to signifi-
cantly enhance all three stages of ML: data preparation,
feature engineering, and model development [210]. These
models excel in zero-shot learning, which enables them
to perform tasks without additional training on specific
datasets. For example, large language models, such as
ChatGPT, can perform a range of tasks from ICD code
extraction [211] to risk triage prediction [212] based on
prompts provided by healthcare professionals. This zero-
shot capability elevates ML to an unprecedented level of
automation, potentially obviating the need for tedious
data preparation and computationally intensive model
development in certain tasks [213]. By contrast, in tasks
in which foundation models exhibit suboptimal perfor-
mance, they can serve as effective tools for feature engi-
neering. The representations within their architectures
can be extracted to enhance downstream models [214]; in
previous studies, researchers validated that downstream
models embedded with these representations out-
performed powerful baseline models [215].

Our study had certain limitations that warrant
refinement in future work. First, we sought to provide an
overview of current AutoML with interpretation systems
in healthcare settings. Hence, we did not consider the
technical details of AutoML and interpretation tech-
niques. For readers interested in these technical in-
tricacies, we recommend referring to the original papers
for a more in-depth exploration. In future work, we may
conduct a detailed review of areas such as the underlying
algorithms, methodologies, and implementation frame-
works. Second, for a given data modality, various com-
mercial software and homemade solutions are readily
available, as illustrated above. Although Figure 4 exem-
plifies the effectiveness of AutoML in predicting in-
hospital mortality for a real-world application, we
refrained from suggesting a one-size-fits-all solution
because of the heterogeneous properties of datasets
across different scenarios. In future endeavors, we could
undertake a thorough benchmarking analysis to delin-
eate guidelines. An exemplary precedent is in the inves-
tigation conducted by Gijsbers et al. [216], wherein they
meticulously scrutinized 9 AutoML frameworks across 71
classification and 33 regression tasks. Finally, to ensure
that all the reviewed papers underwent peer review, we
excluded preprints, which may have resulted in the latest
developments in the field being overlooked. In future
studies, we could explore the integration of bibliometric
methodologies to discern high-quality preprints from a
broader pool, thereby enhancing the comprehensiveness
of paper inclusion [217].
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5 | CONCLUSION

INFORMED CONSENT

Not applicable.

AutoML with interpretation is essential for the suc-

cessful uptake of ML by healthcare professionals. This ORCID

review provides a comprehensive summary of the cur-  Han Yuan © https://orcid.org/0000-0002-2674-6068
rent state of AutoML with interpretation systems in the

context of healthcare. To some extent, the proposed REFERENCES

systems facilitate effortless development and improve 1]
users' trust in ML in healthcare settings. In future
studies, researchers should focus on automated data
preparation, the seamless integration of automation and
interpretation, compatibility with multi-modalities, and

the utilization of foundation models to expedite clinical (2]
implementation.
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