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A B S T R A C T   

Objective: Pneumothorax is an acute thoracic disease caused by abnormal air collection between the lungs and 
chest wall. Recently, artificial intelligence (AI), especially deep learning (DL), has been increasingly employed 
for automating the diagnostic process of pneumothorax. To address the opaqueness often associated with DL 
models, explainable artificial intelligence (XAI) methods have been introduced to outline regions related to 
pneumothorax. However, these explanations sometimes diverge from actual lesion areas, highlighting the need 
for further improvement. 
Method: We propose a template-guided approach to incorporate the clinical knowledge of pneumothorax into 
model explanations generated by XAI methods, thereby enhancing the quality of the explanations. Utilizing one 
lesion delineation created by radiologists, our approach first generates a template that represents potential areas 
of pneumothorax occurrence. This template is then superimposed on model explanations to filter out extraneous 
explanations that fall outside the template’s boundaries. To validate its efficacy, we carried out a comparative 
analysis of three XAI methods (Saliency Map, Grad-CAM, and Integrated Gradients) with and without our 
template guidance when explaining two DL models (VGG-19 and ResNet-50) in two real-world datasets (SIIM- 
ACR and ChestX-Det). 
Results: The proposed approach consistently improved baseline XAI methods across twelve benchmark scenarios 
built on three XAI methods, two DL models, and two datasets. The average incremental percentages, calculated 
by the performance improvements over the baseline performance, were 97.8% in Intersection over Union (IoU) 
and 94.1% in Dice Similarity Coefficient (DSC) when comparing model explanations and ground-truth lesion 
areas. We further visualized baseline and template-guided model explanations on radiographs to showcase the 
performance of our approach. 
Conclusions: In the context of pneumothorax diagnoses, we proposed a template-guided approach for improving 
model explanations. Our approach not only aligns model explanations more closely with clinical insights but also 
exhibits extensibility to other thoracic diseases. We anticipate that our template guidance will forge a novel 
approach to elucidating AI models by integrating clinical domain expertise.   
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1. Introduction 

Pneumothorax is an acute thoracic disease caused by abnormal air 
collection in the pleural space between the lungs and chest wall [1]. 
Timely intervention is crucial to prevent pneumothorax from evolving 
into a life-threatening emergency [2]. In clinical practice, pneumo-
thorax is usually diagnosed by radiologists on a chest radiograph − a 
process that demands considerable expertise and expert efforts. Recent 
advancements suggest that this process can be automated using artificial 
intelligence (AI), especially deep learning (DL) models such as con-
volutional neural networks (CNNs). For instance, EfficientNet B3 [3] has 
demonstrated high accuracy in classifying pneumothorax of various 
sizes, with the area under the receiver operating characteristic curve 
(AUROC) ranging from 88% to 96% [2]. Xception [4] further advanced 
the classification capability, achieving an AUROC of 99% on an open- 
access dataset [5]. While these DL-based classifiers have exhibited 
high-fidelity classification ability, their complexity poses a challenge: 
Comprising numerous interconnected neurons with intricate relation-
ships, their decision-making processes are often opaque and challenging 
to interpret [6]. This complexity can hinder radiologists’ acceptance and 
trust in these AI tools, thereby affecting their practical application in 
real-world settings [7,8]. 

To solve this problem, researchers have introduced various 
explainable artificial intelligence (XAI) methods to chest radiograph 
analysis. For instance, Mosquera et al. [9] applied class activation maps 
(CAM) [10] to identify regions in chest radiographs that significantly 
influence the disease diagnosis. Feng et al. [11] and Wang et al. [4] used 
Grad-CAM [12], a variant of CAM, to pinpoint the specific pixels on 
chest radiographs that contributed most to model predictions. These 
heatmaps partially alleviate radiologists’ concerns regarding the trust-
worthiness of DL models [6]. However, a recent benchmarking study 
pointed out a notable result: Even with a high-accuracy DenseNet-121 
[13] achieving an AUROC of 99.3% in the pneumothorax classification, 
the areas highlighted by the model only coincided with 7.0% of the 
actual lesion areas as delineated by radiologists [14]. Similarly, Rocha 
et al. developed a ResNet-50 [15] with an AUROC of 85.4% in classi-
fying pneumothorax, yet its explanations attained an Intersection over 
Union (IoU) of 17.6% when assessed using lesion areas delineated by 
coarse bounding boxes [16]. Giachanou et al. reported IoUs ranging 
from 3.1% to 15.1% across a variety of model explanations for pneu-
mothorax diagnoses [17]. These identified discrepancies between clas-
sification and explanation capabilities underline the urgent need to 
improve existing model explanations [14]. 

Leveraging prior clinical knowledge is one promising direction to 
enhance model explanations. Specifically, pneumothorax occurs in the 
pleural space between the lungs and chest walls [1]. This clinically 
validated information could serve as invaluable prior knowledge to 
improve model explanations. Previous studies have successfully utilized 
disease location information in pneumothorax classification and locali-
zation. Crosby et al. [18] capitalized on the observation that pneumo-
thorax typically occurs in apex areas of chest radiographs. Therefore, 
they segmented the upper third of chest radiographs for pneumothorax 
classification, achieving enhanced accuracy. However, it remains un-
clear whether model explanations can also take advantage of the loca-
tion information. To address this, Jung et al. [7] identified common 
thoracic disease patterns on chest radiographs, directing models to focus 
on typical disease locales, which in turn enhanced both classification 
and explanation quality. However, their method requires an exhaustive 
labeling of eight common thoracic diseases and is inappropriate for 
resource-limited settings where only diagnostic labels of a single disease 
are available. 

To overcome aforementioned limitations, we propose a template- 
guided approach that crafts a template covering potential occurrence 
areas of pneumothorax to guide model explanations generated by XAI 
methods. We illustrate the performance of our approach through 
comparative experiments of three XAI methods with and without our 

template guidance. Our template-guided approach may provide a novel 
perspective for incorporating clinical knowledge into the explanation of 
other thoracic conditions.  

Statement of Significance 

Problem Current XAI explanations sometimes diverge from actual lesion areas in the 
context of pneumothorax diagnoses. 

What is Already Known Pneumothorax occurs in the pleural space between the lungs 
and chest walls, which could serve as invaluable prior knowledge to improve model 
explanations. 

What this Paper Adds Our study leverages a template derived from clinical 
knowledge of pneumothorax occurrence information to improve model 
explanations. This approach not only aligns model explanations more closely with 
clinical insights but also exhibits extensibility to other thoracic diseases.  

2. Methods 

AI models, especially CNNs, have become the mainstream backbones 
for chest radiograph classification, with various XAI methods accom-
panied to interpret their diagnostic processes [12,19,20]. Despite these 
advancements, a recent study [14] indicates that model explanations 
provided by the pneumothorax classifier fail to match ground truth 
lesion areas, suggesting a need for further improvement. To bridge this 
gap, we propose a template-guided approach for existing XAI methods in 
the context of pneumothorax diagnoses. This section outlines our 
methodology, starting with an introduction of notations followed by a 
detailed description of CNNs’ training strategy. We then illustrate three 
well-established explanation methods for CNNs. The section concludes 
with our proposed approach that guides model explanations with a 
clinical knowledge-derived template. 

2.1. Notations 

We first introduce key notations for subsequent illustrations of 
classifier training and explanation. For the pneumothorax classification 
task, we denote the nonoverlapping training, validation, and test data-
sets as Dtrain, Dval, and Dtest , respectively. Each dataset consists of pairs of 
images and corresponding image-level binary labels, structured identi-
cally. As an illustrative example, we consider the training dataset Dtrain, 
which includes Ntrain samples: 

Dtrain =
{(

Itrain
i ,Ytrain

i
)
, i = 1,2,⋯,Ntrain

}
.

Itrain
i designates a two-dimensional image with a width of W0 and a 

height of H0. Ytrain
i ∈ {0,1} is the ground truth label by radiologists and 

Ytrain
i = 1 states that Itrain

i is diagnosed with pneumothorax. Itrain
i consists 

of W0 × H0 pixels and pw,h(Itrain
i ) denotes a pixel in Itrain

i whose coordinate 
of width and height is (w,h): 

Itrain
i = {pw,h

(
Itrain
i

)
,w = 1,2,⋯,W0, h = 1, 2,⋯.,H0}.

Each pw,h(Itrain
i ) comprises three elements ew,h,c(Itrain

i ) standing for pixel 
values in channel c of red, green, or blue: 

pw,h
(
Itrain
i

)
= {ew,h,c

(
Itrain
i

)
, c = red, green, blue}.

Based on the input of ew,h,c(Itrain
i ) and the output target of Ytrain

i , the 
pneumothorax classifier is trained and subsequently explained. Model 
explanations are typically generated by initially calculating the impor-
tance of pixels and then shortlisting pixels with importance values 
exceeding a pre-determined threshold to constitute the important sub- 
region [14,21]. Our template-guided approach relies on a radiologists- 
annotated lesion delineation Atrain

T of a single image Itrain
T from Dtrain. 

Additionally, for assessing the alignment between model explanations 
and real lesion areas, pneumothorax samples Itest

i in test dataset Dtest are 
also annotated with pixel-level lesion areas Atest

i . Atrain
T holds the same 

structure as Atest
i and we use Atest

i as an illustrative instance. Atest
i is a two- 

dimensional image and consists of W0 × H0 elements aw,h(Atest
i ) ∈ {0,1}. 
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Decided by radiologists, aw,h
(
Atest

i
)
= 1 denotes that the pixel with the 

coordinate of (w, h) in Itest
i belongs to the lesion areas: 

Atest
i = {aw,h

(
Atest

i

)
,w = 1,2,⋯,W0, h = 1, 2,⋯.,H0}.

It is important to note that lesion annotations Atrain
T and Atest

i are 
exclusively employed for model explanations. The model training of 
pneumothorax classifiers follows the standard paradigm that uses binary 
diagnostic labels Ytrain

i and Yval
i [22]. 

2.2. Image classifier training 

CNNs have achieved outstanding performance in various thoracic 
disease classification tasks [23]. In general, the image classifier training 
is to find a set of parameters that minimizes the difference between 
CNNs’ predictions and ground truth labels in the training set. Formally, 
with the training dataset Dtrain, we aim to optimize a model fθ parame-
terized by θ. The model takes input ew,h,c(Itrain

i ), fθ produces an output 
fθ
(
Itrain
i

)
. The optimization objective is to minimize the difference d be-

tween fθ
(
Itrain
i

)
and sample labels Ytrain

i for all samples in Dtrain. The cu-
mulative difference over all training samples known as loss function 
l
(
θ;Dtrain ) is expressed as: 

l
(
θ;Dtrain ) =

1
Ntrain

∑

i
d
(
fθ
(
Itrain
i

)
,Ytrain

i
)
.

To avoid overfitting of fθ, the validation dataset Dval is applied to 
early stop the optimization procedure. If the loss l

(
θ;Dval

)
has not 

decreased for a pre-defined epoch number Nepoch, the iteration of θ will 
be terminated. The last θ that led to a decrease in l

(
θ;Dval

)
is retained as 

the optimal parameter θ*: 

θ* = argminθ

(
l
(
θ;Dtrain)|l

(
θ;Dval) ).

After the determination of θ*, we measure the classification perfor-
mance M on the unseen test dataset Dtest. An evaluation metric m is used 
to assess the model performance by comparing the model prediction 
fθ* (Itest

i ) and the true label Ytest
i : 

M(θ*;Dtest ) =
1

Ntest

∑

i
m
(
fθ*

(
Itest
i
)
,Ytest

i
)
.

2.3. Image classifier explanation 

The developed model fθ* classifies an unseen image Itest
i from the test 

dataset Dtest as fθ* (Itest
i ). We aim to further explain fθ* (Itest

i ) to both un-
cover the model decision logic and evaluate its trustworthiness [24]. A 
commonly used explanation paradigm calculates each pixel’s impor-
tance E(pw,h

(
Itest
i

)
) to the prediction fθ* (Itest

i ), and further identifies the 
focus area R(Itest

i ) consisting of the most discriminative pixels towards 
model outputs [25]. Explanations are considered reliable if focus areas 
precisely match disease lesion areas annotated by human experts [14]. 
Within the explanation paradigm using focus areas [26], we select three 
mainstream XAI techniques, Saliency Map [19], Grad-CAM [12], and 
Integrated Gradients [20], given their frequent use as XAI baselines in 
the existing literature [27,28]. Technical details of these techniques can 
be found in their original publications [12,19,20]. Here we provide a 
concise overview to facilitate the downstream illustration of our 
template-guided approach. 

As a pioneering method in image classifier explanation, Saliency 
Map [19] calculates the importance of pw,h(Itest

i ) through its forthright 
gradient towards fθ* (Itest

i ). Specifically, it computes fθ* (Itest
i )’s gradients 

with respect to every element ew,h,c(Itest
i ) in pixel pw,h(Itest

i ) and derives the 
pixel importance E(pw,h

(
Itest
i

)
) as the largest absolute gradient among all 

channels. 
Saliency Map depicts the impact of each pixel towards final model 

outputs while possibly outlines all recognizable objects in Itest
i and fails to 

spotlight R(Itest
i ) towards fθ* (Itest

i ) [10]. Grad-CAM [12] conjectures that 
the problem can be resolved by initially computing the pixel importance 

E(pw,h

(
Itest
i,conv

)
) on the last convolutional layer Itest

i,conv, and subsequently 

reconstructing E(pw,h
(
Itest
i

)
) through the bilinear interpolation of 

E(pw,h

(
Itest
i,conv

)
). 

Both Saliency Map and Grad-CAM depict the local changes in fθ* (Itest
i )

with respect to a small range of pixel values. However, if a pixel’s 
possible values within a narrow range are always important towards 
fθ* (Itest

i ), the gradient saturates to zero, indicating the opposite conclu-
sion that the pixel is trivial [20]. Integrated Gradients [20] solve this 
problem via computing the gradients sum of m pseudo images interpo-
lated between Itest

i and a reference image Iref obtained by fusing all 
training images. Same as the previous two methods, Integrated Gradi-
ents output the pixel importance E(pw,h

(
Itest
i

)
). 

After obtaining E(pw,h
(
Itest
i

)
by different methods, a binarization 

cutoff value v* is used to outline the most important pixels and constitute 
the model focus region Rv* (Itest

i ). Explanations are considered reliable 
when Rv* (Itest

i ) highly overlaps with lesion areas Atest
i [14]. Different 

metrics, e.g. IoU, are applied to quantify the performance Q of model 
explanations on the test dataset Dtest : 

Q(θ*;Dtest ) =
1

Ntest

∑

i
IoU

(
Rv* (Itest

i ),Atest
i
)
.

2.4. Proposed template-guided explanation 

As illustrated above, baseline XAI methods outline the important 
region Rv* (Itest

i ) from the whole area of Itest
i . However, domain knowledge 

elucidates that pneumothorax typically occurs in the pleural space be-
tween the lungs and chest walls [7,18]. Particularly, on an upright 
frontal radiograph, pneumothorax is recognized by non-dependent 
lucency that parallels the chest wall and displaces the visceral pleural 
line medially. It usually localizes to the lung apices and lateral aspect of 
the lungs. Based on this prior clinical knowledge, we propose a template- 
guided approach that integrates the disease occurrence areas with 
baseline model explanations. The proposed approach requires minimal 
human involvement and yields explanations that align better with the 
clinical understanding of pneumothorax. Fig. 1(a) shows the overview 
of our template guidance as a plug-and-play module for existing XAI 
methods. To depict the pleural space from the clinical experts’ view, a 
canonical lesion annotation by radiologists is extracted as the basis for 
template generation. Then several morphological operations are 
implemented to further refine the pleural space − potential occurrence 
areas of pneumothorax. After that, we shepherd the original explana-
tions using the generated template region: Only the pixel within the 
template boundaries will be included in model focus areas. Finally, focus 
areas with or without template guidance are compared with the ground 
truth lesion annotations. 

The first step in the proposed template guidance is to generate the 
optimal template carrying the location information of disease occur-
rence. Fig. 1(b) summarizes the details of template generation: Using 
one canonical lesion delineation Atrain

T as the starting point, the candi-
date templates are generated by flipping, overlap, and dilation. Selected 
by radiologists, Atrain

T contours at least the pleural space on one side. 
Then the step of flipping turns over the original lesion delineation hor-
izontally to generate Atrain

T,flip on the other side. After that, considering the 
domain knowledge that pneumothorax potentially occurs in both the left 
and the right pleural space, the step of overlapping is implemented to 
generate Atrain

T,overlap spotlighting both left and right pleural spaces [29]. A 

pixel pw,h

(
Atrain

T,overlap

)
is included in the template area if it is within either 

pw,h
(
Atrain

T
)

or pw,h

(
Atrain

T,flip

)
. Another factor affecting the depiction of 
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pleural space is that the chest radiographs are captured at different 
distances and angles. Thus, the position and scale of pleural space vary 
in different radiographs [30]. To address this issue, we introduce the 
step of dilation to eliminate the problem of deformation through 
enlarging the template area to cover a broader space. Following a pre-
vious work [31], a 15 × 15 ellipse kernel sweeps each pixel on the 
original image, and a pixel will be included in the dilated template area 
if one of its neighbor pixels within the kernel belongs to Atrain

T,overlap. After 
that, we obtain the final template T* wherein aw,h(T*) = 1 denotes the 
coordinate of (w, h) in Itest

i belongs to the pleural space. Through the 
element-wise product, the template-guided pixel importance 

E*
(

pw,h
(
Itest
i

) )
is calculated: 

E*( pw,h
(
Itest
i
) )

= T* ⊙ E
(
pw,h

(
Itest
i
) )

.

Finally, the identical approach as the baseline explanation is employed 

to extract the model focus region from E*
(

pw,h
(
Itest
i

) )
. 

3. Experiments 

In this section, we first introduced the datasets. Then we provided 
details on the training and explanation of pneumothorax classifiers, and 
clarified the relevant evaluation metrics. After that, we presented the 
experimental results of pneumothorax classification and explanation. 
We demonstrated that the proposed template-guided approach consis-
tently improved the baseline XAI methods. To provide a comprehensive 
assessment, we visualized both successful and failed cases of model 
explanations. All experiments were conducted using Python, and the 
code has been made publicly available on GitHub for reproducibility 
[32]. 

3.1. Datasets 

The performance of pneumothorax classification and explanation 
was demonstrated using two real-world datasets, SIIM-ACR Pneumo-
thorax Segmentation Challenge [33] and ChestX-Det [34]. These two 
datasets were chosen as they have been widely used as the benchmark 
datasets for pneumothorax classification and lesion recognition 
[35–40]. The SIIM-ACR dataset comprises a total of 12,047 chest ra-
diographs, among which 2,669 instances are diagnosed as positive, 
indicating the presence of pneumothorax. Unlike the SIIM-ACR dataset, 
the ChestX-Det dataset is notably smaller, consisting of 611 healthy 
images and 189 pneumothorax-positive images. Besides the binary 
pneumothorax diagnosis at the image level, both datasets provide pixel- 
level lesion delineations in positive cases, which are not available in 
other recent chest radiograph datasets [41,42]. 

We randomly split the SIIM-ACR dataset into three parts at 60:20:20. 
Specifically, the training set consisted of 7,226 images (60%, containing 
1,600 positive samples), the validation set comprised 2,410 images 
(20%, containing 534 positive samples), and the test set included 2,410 
images (20%, containing 534 positive samples). To validate the gener-
alizability of the proposed method, we evenly partitioned the ChestX- 
Det dataset into validation (50%, containing 95 positive samples) and 
test sets (50%, containing 94 positive samples) for external validation. 
Table 1 gives an overview of the used data sets, annotations, and func-
tions in our study. Detailed information is elaborated in the subsequent 
two sections. 

3.2. Classifier training and evaluation 

We implemented the pneumothorax classifier with two lightweight 
architectures: VGG-19 [43] and ResNet-50 [15] to avoid over-
parameterization in small-sample datasets [44,45] and spatial 

Fig. 1. Overview of the proposed template-guided explanation pipeline. (a) The application of template guidance to improve XAI explanation. (b) Detailed process of 
template generation, which includes expert annotation, extraction, flipping, overlap, and dilation. 
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information loss of XAI when explaining architectures with deeper 
layers [46,47]. Model output layers were modified for binary classifi-
cation. A Stochastic Gradient Descent (SGD) optimizer was employed 
with a learning rate of 1e-3 and a momentum of 0.9. Model training was 
conducted in batches of 16 images, using weighted cross-entropy as the 
loss function to counterbalance the predominance of negative samples 
[48]. The training was set as 100 epochs on the training set of SIIM-ACR 
with an early-stop initiated if no improvement was observed on the 
validation set of SIIM-ACR over 10 consecutive epochs. After the 
training, the model classification performance was evaluated on both 
the internal test set of SIIM-ACR and the external test set of ChestX-Det. 
Evaluation metrics included AUROC, the area under the precision recall 
curve (AUPRC), accuracy, sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV). Binarization cutoffs 
were chosen as the points closest to the upper-left corner in the ROC 
curves on the respective validation sets [49]. For each metric, standard 
errors were calculated using the nonparametric bootstrap method [50]. 

3.3. XAI explanation and evaluation 

After the pneumothorax classification training and evaluation, 
model explanations play a pivotal role in clinical application [21]. Our 
study utilized three model explanation methods: Saliency Map [19], 
Grad-CAM [12], and Integrated Gradients [20]. Our template-guided 
approach worked as a plug-and-play module on the basis of the three 
XAI methods, necessitating only one lesion delineation from the training 
set of SIIM-ACR. Therefore, we had a total of six explanation methods. 
The direct production of the six explanation methods was the pixel 
importance, from which focus areas were further outlined as the final 
explanation using the threshold value v* of 0.95 [51]. We leveraged IoU 
and Dice Score Coefficient (DSC) to quantify the alignment between the 
generated focus areas and ground truth lesion delineations on both the 
internal test set of SIIM-ACR and the external test set of ChestX-Det. The 
standard errors of IoU and DSC were computed through the nonpara-
metric bootstrap method [50]. 

3.4. Experimental results 

In this section, we showed the evaluation results followed by their 
respective standard errors enclosed within parentheses. Table 2 quan-
tifies the model classification performance on the internal test set of 
SIIM-ACR. The VGG-19 classifier achieved results of an AUROC of 0.864 
(0.008), an AUPRC of 0.660 (0.023), an accuracy of 80.5% (0.8%), a 
sensitivity of 78.3% (1.8%), a specificity of 81.1% (0.9%), a PPV of 
54.1% (1.9%), and an NPV of 92.9% (0.7%). The ResNet-50 discrimi-
nator attained an AUROC of 0.842 (0.007), an AUPRC of 0.630 (0.023), 
an accuracy of 77.8% (0.8%), a sensitivity of 75.7% (1.5%), a specificity 
of 78.4% (0.9%), a PPV of 49.9% (2.0%), and an NPV of 91.9% (0.6%). 
Following the evaluation of model classification, Table 3 illustrates the 
model explanation performance of the baseline XAI methods and their 
template-guided versions. Under the framework of VGG-19, the original 
Saliency Map achieved an IoU of 2.2% (0.2%) and a DSC of 4.1% (0.3%). 
The original Grad-CAM obtained an IoU of 1.4% (0.1%) and a DSC of 
2.6% (0.2%). The original Integrated Gradients achieved an IoU of 3.1% 
(0.2%) and a DSC of 5.9% (0.3%). Adding template guidance consis-
tently resulted in performance improvements in terms of IoU and DSC: 
1.0% and 1.9% for Saliency Map, 0.9% and 1.7% for Grad-CAM, and 
1.4% and 2.3% for Integrated Gradients. Based on ResNet-50, the per-
formance enhancements were 1.7% and 3.1% for Saliency Map, 3.0% 
and 5.1% for Grad-CAM, and 2.6% and 4.5% for Integrated Gradients. In 
the internal test scenarios, the incremental percentages of IoU and DSC, 
calculated by the performance improvements over the baseline perfor-
mance, ranged from 41.7% to 168.4% and 30.7% to 114.9%, 
respectively. 

Table 4 presents the classification performance of developed VGG-19 
and ResNet-50 on the external test set of ChestX-Det. Specifically, VGG- 
19 without fine-tuning presented an AUROC of 0.942 (0.016), an AUPRC 
of 0.896 (0.025), an accuracy of 89.7% (1.5%), a sensitivity of 86.2% 
(3.3%), a specificity of 90.8% (1.6%), a PPV of 74.3% (4.4%), and an 
NPV of 95.5% (1.1%). The directly-deployed ResNet-50 also showed 
satisfactory performance. Regarding the explanation performance, akin 
to the internal validation on SIIM-ACR, our template-guided approach 
consistently improved all three baseline XAI methods as showcased in 
Table 5. In terms of IoU and DSC, the template-guided explanation of 
VGG-19 achieved improvements of 1.6% and 3.0% for Saliency Map, 

Table 1 
An overview of the used datasets, annotation, and function.  

Dataset Annotation Function 

SIIM- 
ACR 

Training set Binary 
diagnosis 

Classifier training 

Lesion 
delineation 

Template generation 

Validation 
set 

Binary 
diagnosis 

Classifier training 
Binarization cutoff calculation 

Test set Binary 
diagnosis 

Internal evaluation of classifier’s 
classification capability 

Lesion 
delineation 

Internal evaluation of XAI’s 
explanation capability  

ChestX- 
Det 

Validation 
set 

Binary 
diagnosis 

Binarization cutoff calculation 

Test set Binary 
diagnosis 

External evaluation of classifier’s 
classification capability 

Lesion 
delineation 

External evaluation of XAI’s 
explanation capability  

Table 2 
Internal classification evaluation of various deep learning models. The evaluation metrics on the test set are presented, accompanied by their respective standard errors 
enclosed within parentheses.  

Model AUROC AUPRC Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

VGG-19 0.864 (0.008) 0.660 (0.023) 80.5 (0.8) 78.3 (1.8) 81.1 (0.9) 54.1 (1.9) 92.9 (0.7) 
ResNet-50 0.842 (0.007) 0.630 (0.023) 77.8 (0.8) 75.7 (1.5) 78.4 (0.9) 49.9 (2.0) 91.9 (0.6)  

Table 3 
Internal explanation evaluation of various deep learning models by XAI 
methods. The evaluation metrics on the test set are presented, accompanied by 
their respective standard errors enclosed within parentheses.  

Model XAI Template-Guidance IoU (%) DSC (%) 

VGG-19 Saliency Map ✘ 2.2 (0.2) 4.1 (0.3) 
✔ 3.2 (0.2) 6.0 (0.3) 

Grad-CAM ✘ 1.4 (0.1) 2.6 (0.2) 
✔ 2.3 (0.2) 4.3 (0.3) 

Integrated Gradients ✘ 3.1 (0.2) 5.9 (0.3) 
✔ 4.5 (0.2) 8.2 (0.3)  

ResNet-50 Saliency Map ✘ 2.3 (0.1) 4.3 (0.2) 
✔ 4.0 (0.2) 7.4 (0.3) 

Grad-CAM ✘ 1.7 (0.2) 3.1 (0.3) 
✔ 4.7 (0.3) 8.2 (0.4) 

Integrated Gradients ✘ 2.1 (0.1) 4.0 (0.2) 
✔ 4.7 (0.2) 8.5 (0.4)  
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0.8% and 1.7% for Grad-CAM, and 1.6% and 2.9% for Integrated Gra-
dients. Based on ResNet-50, the performance enhancements were 2.0% 
and 3.6% for Saliency Map, 2.0% and 3.6% for Grad-CAM, and 2.4% and 
4.2% for Integrated Gradients. Notably, the incremental percentages of 
IoU and DSC, when compared with baseline methods, ranged from 
71.3% to 130.9% and 66.5% to 134.1%, respectively. 

These quantitative metrics elucidated the explanation improvements 
attributable to the proposed template-guided approach. To further 
compare XAI methods with and without template guidance, Figs. 2 and 3 
visualize their explanations on the internal test set of SIIM-ACR and the 
external test set of ChestX-Det, respectively. From the left to the right, 
each figure displays the lesion areas delineated by radiologists (Ground 
truth), important regions outlined by the original explanations (Base-
line), and the enhanced explanations (Our method). Figs. 2(b) and 3(b) 
show the samples on which the proposed approach can upgrade the 
original explanation quality. However, the proposed method fails to 
upgrade the baseline in Figs. 2(c) and 3(c). Such a performance contrast 
demonstrated that our template-guided approach fails when the pneu-
mothorax exists outside the template region. Figs. 2(a) and 3(a) illus-
trate scenarios where both XAI methods with and without template 
guidance perform well, whereas Figs. 2(d) and 3(d) depict situations 
where both XAI methods with and without template guidance exhibit 
poor performance. Also, we identified that either method presented a 
lower performance for small pneumothorax compared with the large 
one, which has been reported by other studies [2]. 

4. Discussion 

This study proposed a template-guided approach to improve AI 
model explanation in the context of pneumothorax diagnoses. Based on 
clinical knowledge that pneumothorax occurs in the pleural space, we 
generated a template covering the pleural space based on a canonical 
lesion annotation by radiologists. Then the template was superimposed 
on the baseline explanations to filter out extraneous model explanations 
that fall outside the template’s boundaries. This straightforward 
approach effectively constrained model explanations within the poten-
tial areas of pneumothorax occurrence, avoiding clinically irrelevant 
correlations in extraneous areas outside lesion regions, thereby consis-
tently improving baseline XAI methods across twelve benchmark 

scenarios [52]. 
Beyond the investigated pneumothorax, our template guidance holds 

applicability to other thoracic diseases characterized by clinically vali-
dated disease locations. Cardiomegaly, the heart enlargement evident at 
the cardiac region [53], serves as another use case for the proposed 
template-guided approach. According to the radiological knowledge, 
the cardiac region encompasses the central area of a frontal chest 
radiograph [54]. To derive a comprehensive occurrence template of 
cardiomegaly, radiologists are invited to meticulously analyze radio-
graph samples and collaborate closely with AI engineers to ascertain the 
details of morphological operations. With the derived template, model 
explanation aligns better with clinical knowledge, underscoring the 
value of embedding domain knowledge in DL for healthcare. 

Our method focuses on incorporating domain knowledge into model 
explanations. Researchers have also proposed various methods to 
enhance model explanations for chest radiograph analysis. For instance, 
Zou et al. [55] integrated SHapley Additive exPlanations (SHAP) [56] 
with Grad-CAM++ [57] to produce augmented explanations for chest 
radiograph-based pneumonia diagnosis [58]. Similar ensembling of 
Saliency Map and Grad-CAM has also been proven effective in 
improving the robustness and accuracy of model explanations pertain-
ing to prostate lesion diagnosis. Nevertheless, it is worth noting that 
some professionals hold the perspective that a segmentation model as-
sists clinicians better than a classification model supplemented with 
enhanced explanations [59]. Unlike a classification model that outputs a 
single diagnostic probability, a segmentation model explicitly delineates 
disease lesion areas. Yet an accurate segmentation model is largely 
dependent on the availability of large-scale pixel-level annotations, 
which are time-consuming and hard to acquire [60]. Potential solutions 
to this dilemma are semi-supervised learning and weakly-supervised 
learning [61]. 

Validated through comprehensive studies, both semi-supervised 
learning and weakly-supervised learning stand out as effective 
methods for alleviating the annotation burden during the development 
of an accurate segmentation model. Madani et al. [59] proposed a semi- 
supervised approach for cardiac disease prediction that achieved high 
accuracy using only a small amount of lesion annotations. Based on only 
4% labeled data, they achieved 85% of the accuracy by the fully- 
supervised model on 100% labeled data. Semi-supervised learning still 
requires few pixel-level annotations while weakly-supervised learning 
aims to build a segmentation model using only image-level labels. 
Ouyang et al. [62] derived the pixel-level segmentations through focus 
areas extracted from a classification model and corrected the noisy 
segmentation label by a spatial annotation smoothing technique. They 
showed that the weakly-supervised approach upgraded the segmenta-
tion model training significantly without any pixel-level annotations. 
While these methods are promising in reducing the labeling cost, several 
studies have reported that semi- or weakly-supervised learning failed to 
reach the baseline by a fully-supervised model [63,64]. In medical AI, 
how to achieve a balance between the annotation cost and AI accuracy 
remains an unsolved conundrum in resource-limited settings [24]. With 
the recent release of versatile foundation models, a potential solution 
could be the Segment Anything Model (SAM), known for its capability to 
cut out any object in any image with a single click [65]. Hence, under 
the same budget, SAM facilitates the annotation of a larger number of 
samples and the development of a more accurate segmentation model 
[65]. 

Our study has limitations that warrant future investigation. First, we 

Table 4 
External classification evaluation of various deep learning models. The evaluation metrics on the test set are presented, accompanied by their respective standard 
errors enclosed within parentheses.  

Model AUROC AUPRC Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

VGG-19 0.942 (0.016) 0.896 (0.025) 89.7 (1.5) 86.2 (3.3) 90.8 (1.6) 74.3 (4.4) 95.5 (1.1) 
ResNet-50 0.943 (0.013) 0.870 (0.029) 89.7 (1.6) 84.0 (3.8) 91.5 (1.7) 75.2 (3.9) 94.9 (1.2)  

Table 5 
External explanation evaluation of various deep learning models by XAI 
methods. The evaluation metrics on the test set are presented, accompanied by 
their respective standard errors enclosed within parentheses.  

Model XAI Template-Guidance IoU (%) DSC (%) 

VGG-19 Saliency Map ✘ 1.3 (0.2) 2.5 (0.4) 
✔ 2.9 (0.3) 5.5 (0.6) 

Grad-CAM ✘ 1.1 (0.4) 1.9 (0.6) 
✔ 1.9 (0.4) 3.6 (0.7) 

Integrated Gradients ✘ 2.3 (0.3) 4.4 (0.5) 
✔ 3.9 (0.4) 7.3 (0.7)  

ResNet-50 Saliency Map ✘ 1.7 (0.2) 3.2 (0.4) 
✔ 3.7 (0.4) 6.8 (0.7) 

Grad-CAM ✘ 1.5 (0.4) 2.7 (0.8) 
✔ 3.5 (0.6) 6.3 (0.9) 

Integrated Gradients ✘ 1.8 (0.2) 3.4 (0.4) 
✔ 4.2 (0.5) 7.6 (0.8)  
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employed a static template as a prior in guiding model explanations. 
Although the proposed method improved baseline explanations, the 
current performance is still unable to meet the deployment standards 
required by some regulatory agencies [66]. For example, the Korea 
Ministry of Food and Drug Safety mandates a minimum Dice coefficient 
of 20% for clinically relevant explanations [67]. Future research may 
explore the integration of the current approach with image trans-
formation, which has been proven valuable in modifying the scale, 
angle, and displacement of the fixed template, thereby improving the 
explanation performance [30,68]. Second, we evaluated the perfor-
mance of the template-guided approach within a limited set of experi-
mental configurations, comprising three XAI baselines, two DL models, 
one thoracic disease, and one annotated lesion area. Future endeavors 
will encompass alternative XAI methods like LayerCAM [69], extra DL 

models including vision transformer [70], additional thoracic diseases 
such as cardiomegaly [40,71,72], and templates generated by 
combining multiple annotated lesion images. 

5. Conclusion 

Clinical domain knowledge has been under-investigated in the DL 
community when designing XAI methods and applications. In this study, 
we showcase the value of clinical knowledge, especially potential areas 
of disease occurrence, in consistently improving model explanations 
across twelve benchmark scenarios. It is imperative to highlight that our 
template-guided approach necessitates only a single lesion delineation 
crafted by radiologists, obviating the need for extensive annotation ef-
forts. We anticipate that template guidance will forge a novel approach 

Fig. 2. Visualization comparison of pneumothorax radiograph explained by original and the template-guided Saliency Map, Grad-CAM, and Integrated Gradients 
(IG) on the internal SIIM-ACR test set. 
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to elucidate AI models with the integration of clinical domain 
knowledge. 
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