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A B S T R A C T   

Objective: The proper handling of missing values is critical to delivering reliable estimates and decisions, espe
cially in high-stakes fields such as clinical research. In response to the increasing diversity and complexity of 
data, many researchers have developed deep learning (DL)-based imputation techniques. We conducted a sys
tematic review to evaluate the use of these techniques, with a particular focus on the types of data, intending to 
assist healthcare researchers from various disciplines in dealing with missing data. 
Materials and methods: We searched five databases (MEDLINE, Web of Science, Embase, CINAHL, and Scopus) for 
articles published prior to February 8, 2023 that described the use of DL-based models for imputation. We 
examined selected articles from four perspectives: data types, model backbones (i.e., main architectures), 
imputation strategies, and comparisons with non-DL-based methods. Based on data types, we created an evidence 
map to illustrate the adoption of DL models. 
Results: Out of 1822 articles, a total of 111 were included, of which tabular static data (29 %, 32/111) and 
temporal data (40 %, 44/111) were the most frequently investigated. Our findings revealed a discernible pattern 
in the choice of model backbones and data types, for example, the dominance of autoencoder and recurrent 
neural networks for tabular temporal data. The discrepancy in imputation strategy usage among data types was 
also observed. The “integrated” imputation strategy, which solves the imputation task simultaneously with 
downstream tasks, was most popular for tabular temporal data (52 %, 23/44) and multi-modal data (56 %, 5/9). 
Moreover, DL-based imputation methods yielded a higher level of imputation accuracy than non-DL methods in 
most studies. 
Conclusion: The DL-based imputation models are a family of techniques, with diverse network structures. Their 
designation in healthcare is usually tailored to data types with different characteristics. Although DL-based 
imputation models may not be superior to conventional approaches across all datasets, it is highly possible 
for them to achieve satisfactory results for a particular data type or dataset. There are, however, still issues with 
regard to portability, interpretability, and fairness associated with current DL-based imputation models.   

Abbreviations: DL, Deep Learning; AE, Auto Encoder; DAE, Deep Auto Encoder; GAN, Generative Adversarial Network; LSTM, Long Short-term Memory; MLP, 
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1. Introduction 

Healthcare data has emerged in diverse formats in the era of big data. 
Personalized health monitoring devices, for instance, enable the 
collection of data tailored to an individual’s daily activities. Likewise, 
rapidly evolving laboratory techniques generate vast amounts of 
sequencing data. However, these new data formats are more susceptible 
to the problem of missing values than traditional tabular clinical data 
collected from prospective observational or randomized trials. 

Missing values cast a shadow on data analysis: they can reduce 
prediction power and result in bias in downstream decision-making 
[1,2], which is particularly problematic in high-fidelity decision-mak
ing situations, such as those in healthcare. Complete data analysis or 
simple imputation (mean, median, or mode) may resolve missingness for 
tabular static data, but such strategies may not be adequate for a variety 
of data types and architectures, ranging from static to temporal, tabular 
to imaging and sequencing data. Therefore, advanced approaches are 
necessary to ensure the quality and robustness of models. 

As described by Little and Rubin [3,4], missing data can be catego
rized into three types: missing completely at random (MCAR), missing at 
random (MAR), and missing not at random (MNAR). Prior to the 
widespread adoption of deep learning (DL), traditional statistical and 
machine learning approaches, such as interpolation methods, k-nearest 
neighbor (k− NN) [5], multiple imputation by chained equations (MICE) 
[6], and random forest (RF)-based models like MissForest [7], have been 
used to impute missing values. However, these methods may be 
restricted to certain types of missing data; for example, MICE generally 
assumes that the missing data type is MAR [6]. When applied to complex 
healthcare data, these non-DL-based imputation strategies may exhibit 
low accuracy [8,9], especially when the mechanism of missingness 
cannot be determined. 

In recent years, DL-based methods have increasingly been used to 
solve missing value problems and shown to enhance imputation accu
racy [10,11]. As well, DL-based models can be customized to handle 
complex missing patterns and data structures, such as time-series data 
with unique sequential structures and image data with spatial patterns 
[12,13]. Due to the superior performance and designation flexibility, 
DL-based imputation models have gained popularity in a wide range of 
applications, such as in-patient mortality prediction [14,15] and early 
detection of Alzheimer’s Disease (AD) [12,16]. 

In spite of the presence of several existing reviews on missing value 
imputation, most of them either focus on non-DL-based methods 
[17–19], or treat the neural network as a single type of method [20–24]. 
Due to the lack of specificity, these articles cannot adequately assist 
prospective researchers contemplating the application of DL-based 
models to their own data. To our knowledge, no systematic review has 
been conducted regarding DL-based missing value imputation methods 
for diverse types of healthcare data. Toward bridging this gap, we pre
sent an evidence map analysis [25] that examines model-use by data 
type and provide guidance for researchers using DL-based methodolo
gies to manage missing values. 

2. Materials and methods 

2.1. Search strategies 

In this study, we undertook a systematic literature search to identify 
relevant research articles. We searched five databases (MEDLINE, Web 
of Science, Embase, CINAHL, and Scopus) using a combination of search 
phrases “missing value”, “imputation”, “machine learning”, “deep 
learning”, and “healthcare”. Detailed search strategies are provided in 
eTable 1. 

2.2. Exclusion criteria 

We conducted the study according to the Preferred Reporting Items 

for Systematic Reviews (PRISMA) guidelines [26]. The following rea
sons were considered to exclude studies: the study was not in the med
ical or clinical domain, the imputation model used was not DL-based or 
was not specified, the study was not published as a research article (e.g., 
a conference poster, conference abstract, or book chapter), or the article 
was not written in English. 

2.3. Selection procedure and data extraction 

Two reviewers (ML and SL) independently screened the titles and 
abstracts between 6 August and 11 September 2021, and 8 February and 
23 February 2023 in accordance with the eligibility criteria. The dis
crepancies were resolved through discussions with a third reviewer 
(HY). For full-text screening and information extraction, ML and SL 
separately accessed the documents between 12 September and 22 
October 2021, and 24 February and 7 March 2023. In the event of 
disagreement, they consulted with HY between these dates. Four aspects 
of information were gathered from the included articles: data types, 
model backbones (i.e., main architectures), imputation strategies, and 
comparisons with non-DL-based methods. 

2.4. Data analysis 

To generate an evidence map [25] that illustrates the application of 
DL-based imputation models across various data types, we classified the 
types of data involved in imputation into six categories: tabular static 
data, tabular temporal data, genetic and genomic data, image data, 
signal data, and multi-modal data. While both tabular static and tabular 
temporal data contain observations as rows and features as columns, 
only tabular temporal data include the time factor. Genetic and genomic 
data encompasses both DNA data for organisms and personal genetic 
information. Image data and signal data refer to the information 
generated by specific medical devices, such as magnetic resonance im
aging (MRI) and electrocardiogram (ECG). Multi-modal data refers to 
the use of serval types of data in performing a single imputation task. 

We then categorized the articles according to the “backbones” of the 
imputation model: 1) multi-layer perceptron (MLP) [27]; 2) recurrent 
neural network (RNN) [28], including vanilla RNN, long short-term 
memory (LSTM), and gated recurrent unit (GRU); 3) the framework of 
autoencoder (AE) [29] which includes vanilla autoencoder, denoising 
autoencoder (DAE), and variational autoencoder (VAE); 4) the frame
work of generative adversarial network (GAN) [30]; 5) a hybrid of the 
four backbones mentioned above; and 6) other less common models, 
such as self-organizing map (SOM), graphical network (GNN), con
volutional neural network (CNN) and Transformer component. Detailed 
definitions of these models and their corresponding general imputation 
mechanisms are provided in Fig. 1. Our assessment of imputation stra
tegies was divided into two categories: separated and integrated. As the 
name suggests, “separated” means that the imputation process is sepa
rated from downstream tasks such as disease classification and risk 
prediction, whereas “integrated”, also known as “end-to-end”, refers to 
the imputation process being undertaken concurrently with downstream 
tasks. 

We presented the evidence map based on the cross-tabulation of 
model backbones and data types. Additionally, a bar plot was created to 
illustrate the distribution of imputation strategies. Python version 3.8.3 
(Python Software Foundation, Delaware, USA) and R version 4.0.2 (The 
R Foundation for Statistical Computing) were used for data analysis. 

3. Results 

Our search of five databases yielded 1822 studies, of which 111 were 
included for analysis. Fig. 2 illustrates the selection procedure in detail. 
A summary of the included studies is presented in Table 1. Fig. 3 depicts 
the evidence map between the “backbones” (i.e., main architectures) of 
DL-based imputation models and the types of healthcare data. Among 
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the 111 studies, 32 presented missing value imputation models for 
tabular static data, 44 for tabular temporal data, 15 for genetic and 
genomic data, six for image data, six for signal data, and nine for multi- 
modal data. It is important to note that these numbers are not mutually 
exclusive, as a single study may take into account multiple data types 
and impute them each individually with a single model, or alternatively, 
multiple DL-based imputation models may be applied to and compared 
for a single data type. 

According to Fig. 4, most studies (68 %, 76/111) adopted the 
“separated” strategy. The “integrated” strategy was popular among 
tabular temporal and multi-modal data, but less used for tabular static 

data and genetic and genomic data, and rarely applied to image or signal 
data. Moreover, 61 out of the 111 selected studies investigated the type 
of data missingness, while the remaining addressed imputation directly 
without examining this specification. Table 2 indicates that explanation 
methods are rarely considered among the included studies (6 %, 7/111). 
In addition, we have compiled a summary of code sources in eTable 2, 
which provides more detailed information about the models used in the 
included studies. The following section presents DL-based imputation 
techniques based on different types of health data. 

Fig. 1. Definitions of models and the corresponding imputation mechanisms. 
1Imputation mechanisms: MLP models can be trained on the complete observations to predict the missing values; RNN models can predict the missing values based on 
the previous hidden state (forward imputation [69]); Autoencoder can maintain the whole data structure in a good manner and reveal the missing values in its 
output; GAN can use the generator to capture the data distribution, impute the missing values with the generated data, and apply the discriminator to decide the 
rightness of the imputation with the assistance of domain knowledge, if applicable. The adversarial process allows for precise data distribution capturing. Based on 
these general ideas, applications and variants are discussed in Subsections 3.1–3.6. 
2Long short-term memory (LSTM) and Gated recurrent unit (GRU) are two main branches of RNN. Compared with vanilla RNN, they have an additional mechanism 
of “gates” to control the contribution of “memory”, i.e., sequence-dependencies. GRU with two gates is simpler than LSTM with three gates, but performs similarly in 
many scenarios. 
3Denoising autoencoder (DAE) and variational autoencoder (VAE) hold the same fundamental structure as vanilla autoencoder. DAE receives corrupted data points as 
input and is trained to predict the uncorrupted data points as its output [141]. Considering missingness as one of the forms of corruption, DAE can be more robust to 
missing values than vanilla AE. Variational Autoencoder (VAE) utilizes the technique of variational inference in statistics, which introduces probabilistic modeling in 
latent space to better approximate the true data [100]. 
4Framework refers to the fact that the modules (encoder/decoder and generator/discriminator) which respectively shaped the structures of AE and GAN, can embed 
with various models based on the data input, for example, convolutional neural network (CNN) to tackle images. 
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3.1. Tabular static data 

A total of 32 studies [10,31–61] used tabular static data in this re
view. Most (81 %, 26/32) of them provided non-DL-based imputation 
methods as baselines for comparison with DL-based methods in terms of 
imputation accuracy (if complete data is available) and prediction per
formance, with simple imputation (mean/median/mode imputation, 44 
%, 14/32), k-NN (44 %, 14/32), MICE (34 %, 11/32) and RF-based 
methods (31 %, 10/32) being the most common options. Most of these 
studies demonstrated the superiority of DL-based approaches. 

MLP-oriented models dominate the structures of DL-based imputa
tion methods for tabular static data. Ten studies 
[33,34,40–42,46,48,49,57,60] used MLP models directly, 12 
[35–37,43,47,51–55,58,59] created autoencoder models employing 
MLP modules as encoders and decoders, and five studies 
[31,45,47,56,59] using GANs also implemented MLP modules as gen
erators and discriminators. Studies conducted on one dataset and 
involving both autoencoders and GANs demonstrated the superiority of 
DL-based models in comparison to non-DL-based models [47,59]. Two 
studies [51,59] attempted to improve imputation accuracy by using k- 
NN for pre-imputation and Khan et al. [54] applied GAN for data 
augmentation prior to DAE-based imputation. 

There are several alternatives to MLP. A dynamic layered RNN was 
applied to repeat the imputation process in order to enhance the accu
racy of imputation [38]. Peralta et al. [10] embedded a residual 
connection in their autoencoder to allow for capturing non-linearities. 
To improve the robustness of imputation with respect to varying 
missing rates, Hallaji et al. developed an autoencoder with a ladder 
network structure [44] and a hybrid model incorporating a DAE module 
within the GAN framework [32]. This hybrid model differed from the 

method in [54], in which DAE and GAN were separated. In their 
research, Feng et al. [50] incorporated a transformer module within the 
generator of GAN to capture spatial correlations of the population health 
data. Traynor et al. [61] also used the transformer module, and specif
ically the model “TabNet” for imputation. 

The handling of mixed variable types is challenging for tabular data 
(both static and temporal) due to the assumptions about data distribu
tion and limitations of some non-DL-based methods [36,54]. However, 
DL-based imputation methods could accommodate a mixture of variable 
types with proper encoding and activation functions [35]. 

3.2. Tabular temporal data 

Among the 111 included studies, 44 [8,9,11,13–16,44,62–97] 
addressed missing value imputation for tabular temporal data. This type 
of missing data is usually caused by factors that are less controllable, 
such as patients dropping out or using different assessment patterns for 
different patient subgroups [13,62]. As a result, informative missingness 
accompanied by time dynamics, heterogeneity, and high missing rates 
pose challenges for imputation. 

AE-based (34 %, 15/44) and RNN-based (48 %, 21/44) methods 
were commonly employed to impute tabular temporal data, with 
“separated” imputation strategy being used more often in conjunction 
with the former (93 %, 14/15 for AE-based versus 24 %, 5/21 for RNN- 
based). The development of the “separated” imputation strategy relied 
on ground truth, that is, artificially composing missingness by dropping 
values at random and comparing the imputed values to the dropped 
values. Thirty out of 44 studies reported missing rates, with 13 of these 
studies assessing the robustness of imputation with different rates 
ranging from 5 % to 90 %. 

Fig. 2. Preferred Reporting Items for Systematic Reviews (PRISMA) flow diagram.  
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Table 1 
Summary of included studies.  

Author Health data type Missing 
mechanism 

Model backbone Imputation 
Strategy 

Non-DL Baselines 

Ennett et al. (2008) [42] Tabular Static Data MNAR MLP Separated Mean, Random 
Hernandez-Pereira et al. 

(2015) [39] Tabular Static Data MNAR Other (SOM) Separated 
Mean, Mode, k-NN, Multiple Linear Regression, hot- 
deck 

Seffens et al. (2015) [41] Tabular Static Data MAR, MNAR MLP Separated / 
Bektaş et al. (2018) [46] Tabular Static Data / MLP Separated Mean, Delete, Kmeans 
Turabieh et al. (2018) 

[38] Tabular Static Data / RNN Separated / 
Huang et al. (2018) [40] Tabular Static Data MCAR MLP Separated k-NN, SVM 
Abiri et al. (2019) [35] Tabular Static Data MAR Autoencoder Separated Mean, k-NN, MICE, RF 
Miok et al. (2019) [36] Tabular Static Data MCAR VAE Integrated / 
Phung et al. (2019) [37] Tabular Static Data / DAE Separated Mean, Median, Iterative SVD, k-NN, MF, SoftImpute 
Cheng et al. (2020) [33] Tabular Static Data / MLP Separated / 

Vrbaski et al. (2020) [34] Tabular Static Data 
MCAR, MNAR, 
MAR MLP Separated PMM, SLR, RF, Mean 

Kachuee et al. (2020) 
[45] Tabular Static Data MCAR GAN Separated MICE 

Huang et al. (2020) [51] Tabular Static Data MAR VAE Separated k-NN 
Dong et al. (2021) [31] Tabular Static Data MAR GAN Separated MICE, MissForest 
Hallaji et al. (2021) [32] Tabular Static Data MAR Hybrid (GAN, DAE) Integrated MICE, MissForest, k-NN, EM 
Macias et al. (2021) [55] Tabular Static Data MAR Autoencoder Separated Mean 
Chen et al. (2021) [43] Tabular Static Data / Autoencoder Separated MICE, MissForest, Matrix Completion 
Kalweit et al. (2021) [53] Tabular Static Data MAR Autoencoder Separated Zero, Mean, k-NN 
Peralta et al. (2021) [10] Tabular Static Data MCAR Autoencoder Integrated Pairwise Correlation PCA, Iterative PCA 
Traynor et al. (2022) [61] Tabular Static Data MNAR Other (Transformer) Separated EM, PMM with MICE, MIPCA, RF 
Boursalie et al. (2022) 

[47] Tabular Static Data 
MNAR, MCAR, 
MAR DAE, GAN Separated / 

Bram et al. (2022) [48] Tabular Static Data MCAR, MAR MLP Separated Mean, PMM, NORM, RF 
Chang et al. (2022) [49] Tabular Static Data MNAR MLP Integrated Mean, Median, Mode, k-NN, MICE 
Feng et al. (2022) [50] Tabular Static Data / GAN Separated Mean, Median, k-NN 
Kabir et al. (2022) [52] Tabular Static Data / Autoencoder Separated Iterative, k-NN, SVD, Mean 
Khan et al. (2022) [54] Tabular Static Data MCAR DAE Separated MissForest, MICE 
Neves et al. (2022) [56] Tabular Static Data MCAR GAN Separated / 

Pan et al. (2022) [57] Tabular Static Data 
MAR, MCAR, 
MNAR MLP Separated Mode, Random, Hot-deck, k-NN 

Pereira et al. (2022) [58] Tabular Static Data MNAR VAE Integrated Mean, MICE, k-NN, SoftImpute 
Psychogyios et al. (2022) 

[59] Tabular Static Data MNAR GAN, Autoencoder Separated Mean, Mode, k-NN, MissForest 

Samad et al. (2022) [60] Tabular Static Data 
MAR, MCAR, 
MNAR MLP Separated MICE, Iterative SVD, MF, k-NN  

Beaulieu-Jones et al. 
(2016) [71] Tabular Temporal Data MCAR, MNAR Autoencoder Separated 

Iterative SVD, k-NN, SoftImpute, Mean, Median, 
MICE 

Bianchi et al. (2018) [72] Tabular Temporal Data MAR Autoencoder Integrated Mean, LOCF 

Che et al. (2018) [63] Tabular Temporal Data MCAR GRU Integrated 
Mean, Forward, Concatenating, SoftImpute, k-NN, 
Cubic Spline, MICE, MF, MissForest 

de Jong et al. (2019) [64] Tabular Temporal Data MAR, MNAR Hybrid (LSTM, DAE) Integrated / 
Ghazi et al. (2019) [62] Tabular Temporal Data MAR LSTM Integrated Mean, Forward 
Jun et al. (2019) [76] Tabular Temporal Data / VAE Separated Zero, SoftImpute, k-NN, MICE 
Jung et al. (2019) [68] Tabular Temporal Data / RNN Integrated Mean, Forward 
Park et al. (2019) [9] Tabular Temporal Data / GAN Separated User-Avg, k-NN 
Codella et al. (2019) [73] Tabular Temporal Data / RNN Separated 3D-MICE 

Yoon et al. (2019) [8] Tabular Temporal Data MAR RNN Separated 
Cubic Spline, MICE, MissForest, EM, Matrix 
Completion, MCMC 

Fortuin et al. (2020) [74] Tabular Temporal Data MNAR VAE Separated Forward, Mean, GP 
Ma et al. (2020) [69] Tabular Temporal Data MCAR Hybrid (GAN, RNN) Integrated Zero, RegEM, DynaMMo, TRMF 
Tao et al. (2020) [79] Tabular Temporal Data / DAE Separated Mean, Auto-regression 
Xu et al. (2020) [11] Tabular Temporal Data MNAR, MAR Autoencoder Separated SoftImpute, k-NN 
Habiba et al. (2020) [65] Tabular Temporal Data MNAR, MAR GRU Integrated / 

Lin et al. (2020) [77] Tabular Temporal Data MNAR Autoencoder Separated 
Interpolation, EWMA, k-NN, Kalman smoothing, 
LOCF 

Zhao et al. (2020) [67] Tabular Temporal Data / GRU Separated Ridge Regression 
Yin et al. (2020) [78] Tabular Temporal Data / LSTM Integrated Mean, k-NN, 3D-MICE, T-LGBM 
Tsiligkaridis et al. (2020) 

[66] Tabular Temporal Data MNAR LSTM Integrated / 
Jun et al. (2020) [75] Tabular Temporal Data / RNN Integrated Zero, Mean, k-NN 
Jung et al. (2021) [16] Tabular Temporal Data / LSTM Integrated Mean, Forward, Zero 
Mulyadi et al. (2021) 

[70] Tabular Temporal Data / Hybrid (VAE, RNN) Integrated / 
Xu et al. (2021) [13] Tabular Temporal Data / Autoencoder Separated SoftImpute, MICE, k-NN, MissForest, MiceForest 
Gordon et al. (2021) [84] Tabular Temporal Data MCAR Other (GNN) Separated MICE, k-NN, Mean, MissForest, interpolation 
Liang et al. (2021) [89] Tabular Temporal Data / LSTM Integrated / 
Ramch et al. (2021) [14] Tabular Temporal Data / VAE Separated / 
Wang et al. (2021) [94] Tabular Temporal Data / RNN Separated Mean, k-NN, Matrix Factorization(MF), MICE 

(continued on next page) 
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Table 1 (continued ) 

Author Health data type Missing 
mechanism 

Model backbone Imputation 
Strategy 

Non-DL Baselines 

Zamanzadeh et al. (2021) 
[96] Tabular Temporal Data 

MAR, MCAR, 
MNAR Autoencoder Separated k-NN, MICE, Mean/Mode 

Zhang et al. (2021) [97] Tabular temporal data / 
Hybrid (Autoencoder, 
GRU) Integrated / 

Chen et al. (2022) [80] Tabular Temporal Data / GAN Integrated Mean, k-NN, MICE, EM 
Deshmukh et al. (2022) 

[81] Tabular Temporal Data MAR VAE Separated MICE, MF, k-NN 
Farrell et al. (2022) [82] Tabular Temporal Data / VAE Separated Mean, fixed value, GLM 
Haliduola et al. (2022) 

[85] Tabular Temporal Data MAR, MCAR RNN Integrated / 
Ho et al. (2022) [86] Tabular Temporal Data MAR RNN Integrated / 
Lee et al. (2022) [87] Tabular Temporal Data MNAR Other (Transformer) Integrated / 
Li et al. (2022) [88] Tabular Temporal Data MAR GRU Integrated k-NN, MF, MICE 
Liu et al. (2022) [90] Tabular Temporal Data / GRU Integrated Mean, k-NN, 3D-MICE, Concatenating 
Liu et al. (2022) [91] Tabular Temporal Data / GRU Integrated Mean, k-NN, MICE, Concatenating 
Porta et al. (2022) [93] Tabular Temporal Data MAR LSTM Integrated SoftImpute, ST-MVL 
Rasmy et al. (2022) [15] Tabular Temporal Data / GRU Integrated / 
Yildiz et al. (2022) [95] Tabular Temporal Data / Autoencoder Separated / 
Getz et al. (2023) [83] Tabular Temporal Data MAR, MNAR VAE Separated RF, MICE 
Lu et al. (2023) [92] Tabular Temporal Data / LSTM Separated Cubic Spline, k-NN 

Hallaji et al. (2020) [44] 
Tabular Static Data, Tabular 
Temporal Data 

MNAR, MCAP, 
MAR Autoencoder Separated EM, MissForest, MICE 

Sun et al. (2008) [103] Genetic and Genomic Data MAR MLP Separated fastPHASE, EM 
Badsha et al. (2019) 

[101] Genetic and Genomic Data MAR Autoencoder Separated scVI, SAVER, MAGIC, ALRA, scImpute 
Kinalis et al. (2019) [102] Genetic and Genomic Data / Autoencoder Integrated / 

Chen et al. (2019) [98] Genetic and Genomic Data / MLP Separated 
Mean, SVD, FactoMineR, fastICA, Bayesian-based 
NMF, gradient-based NMF 

Qiu et al. (2020) [100] Genetic and Genomic Data MCAR, MNAR VAE Separated Mean, k-NN, Iterative SVD 
Mongia et al. (2020) [99] Genetic and Genomic Data / MLP Separated scImpute, drImpute, MAGIC, SAVER 
Tian et al. (2021) [104] Genetic and Genomic Data / Autoencoder Separated scImpute, SAVER, MAGIC 
Dai et al. (2021) [107] Genetic and Genomic Data MAR GAN Separated MICE, SoftImpute, Sinkhorn, Linear RR 
Zhang et al. (2021) [110] Genetic and Genomic Data / Other (CNN) Separated MAGIC, SAVER, scImpute 
Chen et al. (2022) [106] Genetic and Genomic Data MAR MLP Separated Mean, PMM, NORM 
Mahbub et al. (2022) 

[108] Genetic and Genomic Data MCAR Autoencoder Separated / 
Peacock et al. (2022) 

[109] Genetic and Genomic Data / VAE Separated / 

Zhang et al. (2022) [111] Genetic and Genomic Data MCAR Autoencoder Separated 
ALRA, SAVER, scImpute, DrImpute, MAGIC, 
EnImpute，VIPER 

Zhou et al. (2022) [112] Genetic and Genomic Data / Autoencoder Integrated / 

Chen et al. (2023) [105] Genetic and Genomic Data / Autoencoder Separated 
SAVER, scImpute, VIPER, bayNorm, scRecover, 
ALRA, SCRABBLE 

Pan et al. (2018) [114] Image 
MCAR, MNAR, 
MAR GAN Separated / 

Lee et al. (2019) [115] Image / GAN Separated / 
Pan et al. (2020) [116] Image / GAN Separated / 
Xia et al. (2021) [113] Image / GAN Separated Interpolation, Mean 
Gao et al. (2021) [12] Image / GAN Separated / 
Peng et al. (2021) [117] Image / GAN Separated /  

Miller et al. (2018) [122] Signal / Autoencoder Separated / 

Saeed et al. (2018) [120] Signal / 
Hybrid (Autoencoder, 
GAN) Separated Mean, Median, filling with − 1, PCA 

Feng et al. (2019) [121] Signal MAR RNN Separated Mean, k-NN, SoftImpute, BiScaler, MICE 
Jang et al. (2020) [119] Signal / DAE Separated Mean, MICE 
Calhas et al. (2020) [124] Signal MAR GRU Separated k-NN, Mean, Barycenter, MICE 
Lee et al. (2021) [123] Signal / GAN Separated Random  

Thung et al. (2017) [128] Multi-modal Data MNAR Other Integrated LRMC, iMSF 
Jabason et al. (2018) 

[130] Multi-modal Data MNAR Autoencoder Integrated Mean, k-NN 
Kim et al. (2020) [127] Multi-modal Data MAR, MNAR MLP Integrated / 
Kim et al. (2020) [126] Multi-modal Data / DAE Separated k-NN, SVD, Mean 
Akramifard et al. (2020) 

[125] Multi-modal Data / Autoencoder Separated Mean 
Fan et al. (2021) [133] Multi-modal Data MAR, MCAR MLP Separated MF 
Vivar et al. (2021) [129] Multi-modal Data MAR Hybrid (LSTM, GCN) Integrated k-NN, PPCA, MICE-LR 
Li et al. (2021) [131] Multi-modal Data / RNN Integrated Mean, k-NN, MICE 
Xu et al. (2022) [132] Multi-modal Data / VAE Separated Mean, k-NN, MissForest, SoftImpute 

SAVER: Single-cell Analysis Via Expression Recovery; MAGIC: Markov Affinity-based; Graph Imputation of Cells; k-NN: k-Nearest Neighbor Imputation; PPCA: 
Probabilistic Principal Component Analysis; MICE: Multiple Imputation by Chained Equations; MICE-LR: Multiple Imputation by Chained Equations with Linear 
Regression; EM: Expectation Maximization; PMM: Predictive Mean Matching; SLR: Stochastic Linear Regression; RF: Random Forest; ALRA: Adaptively thresholded 
Low-Rank Approximation; EWMA: Exponentially Weighted Moving Average; LOCF: Last Observation Carried Forward; GP: Gaussian Process; SVD: Singular Value 
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The framework of autoencoder provides great flexibility when 
handling the complex characteristics of tabular temporal data during 
imputation [13]. Eight studies [11,13,44,71,72,77,95,96] designed va
nilla autoencoders, some of which were specifically customized to fit the 
data. The customizations included adding an extra encoder to deal with 
patient heterogeneity, implementing a ladder network to tackle both 
spatial and temporal relationships, and incorporating a transformer 
module to capture long-term dependencies. Tao et al. [79] developed a 
DAE method to denoise missing data. Six studies [14,74,76,81–83] 
adopted VAE models to reflect correlations over time based on varia
tional posteriors. These models are based on statistical knowledge such 
as Gaussian process and Bayesian inference, which permit a robust and 
accurate representation of tabular temporal data. 

Modeling sequence data with RNN-based methods allows for 
capturing missing patterns related to time dynamics. Among the 21 
studies that applied RNN-based methods, 14 
[15,16,62,63,65–67,78,88–93] developed LSTM or GRU models using 
the gate mechanism to control the information flow along the sequence. 
In particular, three studies [63,65,67] applied or developed variants of 
GRU-D – a model that uses a specific parameter to characterize the decay 
of effects over time. Among the seven studies [8,68,73,75,85,86,94] that 
utilized vanilla RNN models, Jun et al. [75] specifically employed the 
variational posterior to capture uncertainty. Other than one-direction 
RNN-based models, some [8,73,78,86,88,92,94] designed their models 
with bi (multi)-directions to incorporate both past and future informa
tion for imputation. 

Moreover, three studies [64,70,97] developed hybrid RNN-based 
and AE-based methods in which the AE component was added after 
initial imputation by RNN. Three other studies used the GAN frame
work, where adversarial learning (either alone [9] or in conjunction 
with an additional transformer module to encode the missingness par
allelly [80] or in combination with RNN [69]) can help prevent error 
propagation from imputation to downstream tasks. Besides the afore
mentioned models, Gorden et al. [84] developed a GNN model based on 
a joint bipartite graph, and Lee et al. [87] applied a hierarchical trans
former model to accommodate irregular time sequences. 

3.3. Genetic and genomic data 

In this review, 15 studies [98–112] dealt with genetic and genomic 
data, including single-cell RNA sequencing data 
[99,102,104,105,110,111], gene expression data [101,103,107,108], 
and combinations of several data formats such as DNA methylation, 
mRNA, and microRNA data [98,100,106,109,112]. Data obtained from 
single-cell sequencing may contain around 50 % zero-count observa
tions [101,104], some of which are “false zeros” or “false negatives”, i.e., 
missing values due to inadequate sequencing input [99]. Furthermore, 
the high dimension property complicates the imputation of genetic and 
genomic data [106,107]. 

A total of nine studies [100–102,104,105,108,109,111,112] used 
AE-based models (vanilla AE and VAE), four studies [98,99,103,106] 
were based on MLP, and another two studies employed GAN [107] and 

Decomposition; MCMC: Markov Chain Monte Carlo; LRMC: Low-Rank Matrix Completion with sparse feature selection; iMSF: incomplete Multi-Source joint Feature 
learning; SVM: Support Vector Machine; RegEM: Regularized Expectation Maximization; TRMF: Temporal Regularized Matrix Factorization; NMF: Non-negative 
Matrix Factorization; T-LGBM: Light Gradient Boosting Machine on Temporal and Cross-variable Features; VIPER: Variability-Preserving ImPutation for Expression 
Recovery; MF: Matrix Factorization; GLM: Generalized linear model; ST-MVL: Spatio-Temporal Multi- View-based Learning; MIPCA: Multiple Imputation with 
Principal Component Analysis. 

Fig. 3. The evidence map between “backbones” (main architectures) of model and data type “Backbones” are classified into ten categories: MLP (multi-layer 
perceptron), RNN (recurrent neural network), LSTM (Long short-term memory), GRU (gated recurrent unit), AE (autoencoder), DAE (denoising autoencoder), VAE 
(variational autoencoder), GAN (generative adversarial network) and Other, which includes less frequently used models such as SOM (self-organizing map). Data 
types are categorized into seven categories: tabular static, tabular temporal, genetic and genomic, image, signal, and multi-modal data. The numbers are 
non-exclusive. 
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CNN [110] models. Non-DL methods such as “scImpute” (40 %, 6/15) 
were commonly used for comparison. By using AE-based models and 
transfer learning, Badsha et al. [101] extracted prior knowledge about 
gene-gene relationships and learnt the dependence structure within the 
reference panel. Kinalis et al. [102] suggested that the architecture of AE 
and VAE facilitates more interpretable imputation procedures. Upon 
proper training, the autoencoder can be interpreted as a combination of 

biologically meaningful modules. In their study, Chen et al. [105] con
strained their autoencoder by bulk sequencing data when imputing 
single-cell sequencing data. Aside from AE’s ability to reduce the 
dimension in latent space, MLP may also contribute to dimensionality 
reduction for imputation [98,99]. In one example, Chen et al. [98] 
deciphered two low-dimensional hidden representations from the orig
inal high-dimensional data to explain a molecular relationship and a 
sample-level connection. Moreover, instead of using MLPs to handle 
high-dimensional missingness, Dai et al. [107] used GAN and Zhang 
et al. [110] used CNN models to examine expression patterns. 

3.4. Image data 

There were six studies [12,113–117] that focused on image data, five 
of which analyzed neuroimages, including magnetic resonance imaging 
(MRI) and positron emission tomography (PET); these images have been 
widely adopted for computer-aided diagnosis of AD and mild cognitive 
impairment (MCI) [12,114–117]. Another study [113] examined car
diac magnetic resonance (CMR) images, which are often considered the 
gold standard for many cardiovascular medicine analyses. Insufficient 
image quality and acquisition or storage errors are two of the most 
common causes of missing pixels in image data [12,113]. In practice, 
PET scans may be rejected by many MRI patients due to high cost and 
radioactive exposure [116], resulting in the absence of the entire image. 

All six studies constructed GAN frameworks for missing value 
imputation. Only one study [113] established non-DL-based imputation 
baselines for comparison (mean imputation and an interpolation 
approach), while the other five did not. Moreover, only one study [114] 
clarified the missing mechanism (i.e., MCAR, MAR, or MNAR). By uti
lizing label information in a conditional GAN, missing pixels in an image 
can be imputed or a new image can be synthesized when the whole 
image is missing [113]. Imputing PET data based on the corresponding 
MRI images was also investigated for brain diseases diagnosis [12,118]. 
To impute the entire image, a task-induced GAN can be developed with 
two tasks designed for the discriminator: whether the image is true and 
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Fig. 4. The distribution of imputation frameworks (integrated or separated) by data type.  

Table 2 
Explanation of missing value imputation models.  

Author Health data 
type 

Model backbone Explanation 
type 

Explanation 
method 

Huang 
et al. 
(2020) 
[51] 

Tabular 
Static Data VAE Post hoc RF 

Park et al. 
(2019) 
[9] 

Tabular 
Temporal 
Data GAN Post hoc Attention 

Zhang 
et al. 
(2021) 
[97] 

Tabular 
Temporal 
Data 

Hybrid 
(Autoencoder, 
GRU) Post hoc Attention 

Chen et al. 
(2022) 
[80] 

Tabular 
Temporal 
Data GAN Post hoc Attention 

Ho et al. 
(2022) 
[86] 

Tabular 
Temporal 
Data RNN Post hoc SHAP 

Lee et al. 
(2022) 
[87] 

Tabular 
Temporal 
Data 

Other 
(Transformer) Post hoc LRP 

Rasmy 
et al. 
(2022) 
[15] 

Tabular 
Temporal 
Data GRU Post hoc 

Integrated 
gradient 

RF: Random Forest; SHAP: SHapley Additive exPlanations; LRP: Layer-wise 
Relevance Propagation. 
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whether it indicates disease [12]. This task was addressed by Cycle-GAN 
and Colla-GAN [114,115], similar to Pan et al. [116] that connected MRI 
and PET by designing two generators and two discriminators in their 
GAN framework. Another study by Peng et al. [117] combined voxel- 
wise reconstruction loss with perceptual loss to maintain the consis
tency of disease details. 

3.5. Signal data 

A variety of signal data was discussed in six studies, including 
actigraphy device data [119], smartphone applications data [120], 
wearable sensor data [121], medical waveforms (e.g. ECG, EEG) 
[122,123], and time-series signals measured at fMRI [124]. In two 
studies, the missing mechanism was identified as MAR [121,124], while 
no claim was made in four other studies. In contrast to tabular temporal 
data, signal data usually has a high sampling rate and is susceptible to 
noise. As a result of intermittent disconnections, body movement, and 
firmware malfunctions, there is a large amount of missing data collected 
during the movement [121], with blocks of features being lost simul
taneously. It may be necessary to characterize the missing interval by 
analyzing it as a period of continuous repetition of zero values [119]. For 
medical waveform data, even a low missing rate in real-time operational 
systems, such as removing the lead for a few seconds, can significantly 
impact the prediction performance [122]. Also, due to the long 
recording duration and lack of frequent monitoring, missingness tends 
to occur repeatedly until the cause is identified [123]. Similarly to image 
modality, fMRI is prone to noise artifacts, resulting in missing values for 
signal modality. This presents challenges to the imputation process, 
where the spatiotemporal nature of the data can be helpful [124]. 

The non-DL-based imputation methods, simple imputation (mean/ 
median imputation, 67 %, 4/6) and MICE (50 %, 3/6), are common 
baselines in these six studies. Three studies used customized AE-based 
models: denoising autoencoder that treated missingness as a type of 
noise [119], adversarial autoencoder where the encoder contributed to 
feature representation and followed by the discriminator of GAN [120], 
and 1-D convolutional and corresponding deconvolutional modules 
[122]. One study applied a GAN imputation model with a prediction loss 
to preserve the contextual information about features [123]. In the other 
two studies [121,124], RNN models were applied with the time factor 
taken into account. Signal imputation in fMRI data is accomplished by 
first filling in the missing values using spatial information, and then 
regularizing the time domain using a GRU layer [124]. 

3.6. Multi-modal data 

A total of nine studies [125–133] investigated imputation methods 
for multi-modal data, where information fusion procedures were 
essential to connect modality-specific models. Five studies employed 
autoencoder models and built linkages between encoders and decoders 
to concatenate different modalities [125,126,130–132]. For example, 
Kim et al. [126] developed a stacked DAE model with a merged hidden 
layer that served as a linkage. They also created a collaborative layer to 
connect MLP models across different modalities [127]. Moreover, Xu 
et al. designed a product-of-expert module to discover the intrinsic 
correlations between different data mortalities [132]. Rather than fusing 
information across modalities, Li et al. [131] applied a sequence struc
ture for linking modality-specific models. The task-specific layers 
designed by Thung et al. [128] could enable iterative communication 
between modality-specific layers, thereby facilitating the exchange of 
cross-modal information. In their end-to-end framework, Vivar et al. 
[129] aggregated recurrent graph convolutional models through the 
self-attention process. Using this architecture, missing value imputation 
was transformed into the completion of a geometric matrix. Solving this 
geometric problem has been demonstrated to be effective when graph 
convolutional models are coupled with LSTMs. 

4. Discussion 

With this systematic review, we contribute to a comprehensive 
summary of knowledge regarding the efficacy of DL models in missing 
value imputation for healthcare data. We found that DL models are su
perior to non-DL-based methods in that they are customized to take into 
account the data type as well as the missing patterns, thereby improving 
the quality of data imputation. Besides, the “integrated” imputation 
strategy could enhance the performance of both imputation and down
stream analysis, and its usage varied across data types, highlighting the 
advantages of imputation based on the characteristics of the data type. 
Our investigation also revealed a lack of attention toward the issues 
related to method practicability, interpretability, and fairness concerns. 

4.1. The mapping of DL-based imputation methods with data types 

Data-type-oriented DL-based imputation models are both beneficial 
for the imputation process and downstream tasks. As illustrated in Fig. 3, 
DL-based imputation models are associated with data types. The MLP- 
dominated models (MLP, autoencoders, and MLP-based GANs) are 
widely used to determine the feature relevance of tabular static data. 
With tabular temporal data, informative missingness and high missing 
rates make it difficult to characterize time dynamics [11,13]. RNN-based 
models, such as bi-directional RNN [8], and autoencoders with statis
tical modeling, such as VAE [74], are commonly used for capturing 
complex time patterns. 

In the case of genetic and genomic data, the biological characteristics 
and associated biological knowledge, such as gene-gene relationships, 
can be effectively incorporated into the imputation process 
[98,99,101,102]. In the context of image imputation, GAN-based 
models are commonly used. Providing additional information, such as 
labeling (Co-GAN [134]) and relevant images (Cycle-GAN [135] or 
Colla-GAN [115]), can enhance the performance of imputation. The use 
of CNNs, residual networks, and attention blocks is prevalent in 
addressing deep spatial information contained in image data 
[12,113–117]. There is a wide range of imputation procedures for signal 
data, partly because different signal types have different causes of 
missingness. 

The fusion of mode-specific models is essential when encoding multi- 
model data. Currently, most operations are focused on the layer level, 
for example, stacking and self-attention mechanism 
[125,126,130–132]. Some researchers use the term “multi-modality” 
when describing datasets collected from different sources but of the 
same type (e.g., image data of MRI and PET [12,114], RNA and 
methylation data [109,112]). 

An opening exists in the imputation approach for medical text data. 
There may be an explanation for this: since techniques in natural lan
guage processing (e.g., BERT [136]) inherently learn representation 
through masking, i.e., considering some language tokens as missing on 
purpose, so the actual absence of tokens will not be an issue. Medical 
text data can be analyzed using customized biomedical research models, 
such as BioBERT [137] and MedBERT [138]. 

4.2. The benefits of “integrated” imputation strategy 

The block-building logic enables DL-based models to adopt an “in
tegrated” strategy, i.e., co-training imputation and downstream tasks, 
which is advantageous for several reasons. First, the interaction between 
these two tasks can be mutually beneficial, reducing the bias in impu
tation, and providing prior information for downstream modeling 
[64,69,87,129,131]. Additionally, the “integrated” strategy is more 
practical since it avoids the difficulties in defining imputation accuracy 
when the missing rate of the original dataset is high, indicating limited 
ground truth for imputation quality checking [75,78,87,139]. More
over, when multiple data types are involved in an “integrated” frame
work, the fusion of latent information during the imputation process can 
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directly be used for downstream tasks, thereby preventing redundant 
training efforts [75,128,130]. This is in line with the relative prevalence 
of the “integrated” strategy when working with tabular temporal and 
multi-modal data, as shown in Fig. 4. 

In contrast to the “separated” strategy, the “integrated” strategy does 
not emphasize the selection of the optimal combination of imputation 
and downstream models [129]. The “separated” strategy, in which the 
best imputation model is determined first and then downstream models 
are chosen, may not be effective given the belief that imputation accu
racy does not directly affect downstream tasks [34,129]. The “inte
grated” strategy can resolve these practical difficulties by imputing 
missing data together with the downstream models being developed. It 
should be noted, however, the “integrated” strategy results in greater 
model complexity, which explains its limited application in current 
studies (Fig. 4). 

4.3. Comparison with non-DL-based imputation models 

When both non-DL-based and DL-based imputation models are 
available, the former may be preferred for its simplicity of imple
mentation; some non-DL-based methods (such as MICE, XGboost, 
LightGBM, etc.) could produce effective imputation when paired with 
carefully constructed data presented in a tabular or temporal format 
[17]. The ease of application is, however, dependent upon restrictive 
statistical assumptions about data, which can be difficult to identify in 
real-world scenarios [85,140]. Furthermore, feature engineering re
quires a substantial amount of time and effort [37], diverting re
searchers from their primary research objectives. Other concerns, such 
as high data dimension [11,79] and low time efficiency [11,126], also 
pose obstacles for non-DL-based methods. For healthcare data in com
plex formats, DL-based models seem ideal, as statistical assumptions and 
feature engineering are relatively less needed, and they do not suffer 
from the curse of dimensionality. Additionally, pre-trained DL-based 
models can reduce computational costs at the evaluation stage [100]. 

4.4. Drawbacks and future directions of DL-based imputation models 

Several potential concerns have been raised based on this review, 
which can influence the adoption of DL-based models for missing value 
imputation on a large scale. A high degree of portability is essential 
considering the heavy burden placed on healthcare systems. When 
dealing with complex healthcare data, researchers may easily fall victim 
to model stacking. Models should be carefully and efficiently designed to 
better capture missing patterns and take advantage of module interac
tion [69,129], rather than stacking for novelty. Besides, clinical practi
tioners lacking deep learning expertise may find it challenging to 
implement DL-based imputation models. 

The interpretability of DL-based models is fundamental to bridging 
the gap between clinicians and algorithm developers. Nevertheless, this 
aspect has only been mentioned in a few studies [9,15,51,80,86]. 
Although full transparency is a difficult goal to attain, model inter
pretability can still be achieved through post-hoc methods such as 
SHapley Additive exPlanations (SHAP), or by using the attention 
mechanism for explanations (Table 2). As such, explanations like feature 
importance ranking can contribute to objective variable selection and 
model evaluation; consequently, it can not only improve the practica
bility of DL-based models, but will also enhance clinicians’ confidence 
and trust in complex models. 

Moreover, researchers should also pay attention to the fairness in the 
imputation process, which has not been adequately addressed at the 
moment, and there is a lack of discussion on social bias, or discrimina
tion against certain groups or individuals [1,13]. Using imputed data 
influenced by such bias may adversely affect the subsequent analysis 
and result in unjustified decision-making and medical inequality. 

4.5. Limitations 

This study has several limitations. First, the scope of our review was 
limited to clinical and translational research; however, some DL-based 
imputation techniques may be published in other research fields. Sec
ond, Transformer and CNN were viewed as additive modules, rather 
than model “backbones” because they were commonly used within 
autoencoder and GAN frameworks as opposed to individual models, 
which may differ slightly from the usual usage. Third, we focused pri
marily on data types and their corresponding imputation strategies. 
Lastly, we did not provide data type-specific experimental comparisons 
since a comprehensive and quantitative evaluation is beyond the scope 
of this study. 

5. Conclusions 

Our study fills a gap in the existing literature by systematically 
reviewing and evaluating DL-based methods for missing value imputa
tion. In contrast to conventional imputation techniques like k-NN and 
MICE, DL-based imputation models represent a family of techniques. 
The design of DL-based imputation models in healthcare should be 
tailored to data types and characteristics. As with non-DL models, there 
is no universally ideal DL-based imputation model, but achieving 
satisfactory performance with respect to a specific data type or dataset is 
highly feasible. Research in the future may focus on the portability, 
interpretability, and fairness of DL-based imputation models. 
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