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Abstract

While deep learning has exhibited remarkable predictive capabilities in various medical
image tasks, its inherent black-box nature has hindered its widespread implementation in
real-world healthcare settings. Our objective is to unveil the decision-making processes
of deep learning models in the context of glaucoma classification by employing several
Class Activation Map (CAM) techniques to generate model focus regions and comparing
them with clinical domain knowledge of the anatomical area (optic cup, optic disk, and
blood vessels). Four deep neural networks, including VGG-11, ResNet-18, DeiT-Tiny,
and Swin Transformer-Tiny, were developed using binary diagnostic labels of glaucoma
and five CAM methods (Grad-CAM, XGrad-CAM, Score-CAM, Eigen-CAM, and Layer-
CAM) were employed to highlight the model focus area. We applied the paired-sample
t-test to compare the percentage of anatomies in the model focus area to the proportion
of anatomies in the entire image. After that, Pearson’s and Spearman’s correlation tests
were implemented to examine the relationship between model predictive ability and the
percentage of anatomical structures in the model focus area. On five public glaucoma
datasets, all deep learning models consistently displayed statistically significantly higher
percentages of anatomical structures in the focus area than the proportions of anatomical
structures in the entire image. Also, we validated the positive relationship between the
percentage of anatomical structures in the focus area and model predictive performance.
Our study provides evidence of the convergence of decision logic between deep neural
networks and human clinicians through rigorous statistical tests. We anticipate that it
can help alleviate clinicians’ concerns regarding the trustworthiness of deep learning in
healthcare. For reproducibility, the code and dataset have been released at GitHub1.

Keywords: Glaucoma diagnosis, Optic cup and disk, Blood vessels, Explainable machine
learning, Class activation map, Convolutional neural networks, Vision transformer

1. https://github.com/Han-Yuan-Med/the-statistical-association-between-cam-and-domain-knowledge
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1. Introduction

In the last decade, deep learning has reshaped various ophthalmological disease diagnoses (Li
et al., 2024). Although deep neural networks feature high-fidelity accuracy on retrospective
classification, localization, and segmentation tasks, clinicians still cannot fully trust their
decisions on prospective medical practice due to their black-box characteristics (Rudin,
2019). To open the black box of deep learning and address the interpretability issue, various
methods have been proposed to explain model inference logic on different healthcare data
(Yuan et al., 2024d). In the realm of medical image analysis, a commonly used set of
methods, known as the Class Activation Map (CAM) family, is developed to map the
final diagnostic decision back onto the input images by highlighting the important pixels
(regions) within the images. Such an assisted heatmap will be provided to clinicians to
conduct further evaluation on whether the model focuses on the clinically relevant region of
interest (ROI) (Zhou et al., 2016). If a deep learning model consistently performs well on
a specialized task and puts its attention on the lesion area causing the disease, clinicians’
concern about the model reliability would be alleviated (Yuan, 2024c).

Glaucoma is a neuro-degenerative disease caused by the increase of intra-ocular pressure
and will progress into complete blindness without early medical intervention (Varma et al.,
1992; Liang et al., 1997; Garway-Heath et al., 1998; Morgan et al., 2012). Conventional clin-
ical diagnosis was based on the clinicians manual evaluation of optic cup, optic disk, blood
vessels, intraocular pressure, and visual field (Varma et al., 1992; Liang et al., 1997; Garway-
Heath et al., 1998; Morgan et al., 2012; Xue et al., 2022; Morano et al., 2021). Recently,
multiple deep learning-based systems were proposed to automate this process (Thompson
et al., 2020; Mirzania et al., 2021). For example, Shinde introduced a comprehensive four-
stage pipeline for glaucoma classification, including the delineation of the optic disk area,
the segmentation of the optic cup and disk, the extraction of relevant clinical features, and
finally, the classification of glaucoma based on these previously extracted features (Shinde,
2021). However, prior research efforts in this field have primarily focused on enhancing the
diagnostic accuracy of glaucoma (Mitra et al., 2018; Zhao et al., 2023; Liu et al., 2022; Zhao
et al., 2019). While some studies have offered qualitative visualizations illustrating that the
decision logic of deep neural networks aligns with clinical domain knowledge concerning the
optic cup, optic disk, and blood vessels (Akter et al., 2022; Thakoor et al., 2019; Li et al.,
2019; Liao et al., 2019), there remains a need for quantitative and systematic evaluations on
model decision logic to further bolster the confidence of ophthalmologists in the deployment
of deep neural networks.

To address the quantification issue above, we implemented a paired-sample t-test to
measure the association between model focus region and domain knowledge-based anatom-
ical area in the context of glaucoma diagnosis. Compared with the clinically irrelevant area
in the input image, the model statistically significantly concentrated more on the anatomical
area (optic cup, optic disk, blood vessels) where clinicians make their diagnosis, showing the
convergence of data-driven solutions and human knowledge-based strategies (Varma et al.,
1992; Liang et al., 1997; Garway-Heath et al., 1998; Yuan, 2024b). We further demon-
strated that the model diagnostic performance was positively correlated with its attention
ratio on the important lesion area, indicating that future model developers should take the
clinical knowledge into account rather than treat medical image tasks as general computer
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vision missions using a fully end-to-end approach. Compared with the previous work on
comparing model explanation and domain knowledge (Liao et al., 2019; Yuan et al., 2023),
we performed rigorous statistical tests on both convolutional neural networks (CNN) and
transformers. In summary, we presented that an image-level diagnostic annotations-based
model correctly summarized reasonable medical knowledge towards clinicians, underscor-
ing the potentiality of deep learning in distilling latent knowledge in the future machine
intelligence-based machine (Yuan, 2024a).

2. Materials and Methods

2.1. Dataset

We conducted a comprehensive investigation into the association between deep learning
inference logic and clinical domain knowledge by utilizing five public datasets: ORIGA
(Zhang et al., 2010), HRF (Budai et al., 2013), LES-AV (Orlando et al., 2018), Drishti-GS
(Sivaswamy et al., 2014), and FIVES (Jin et al., 2022). These datasets encompassed a total
of 650, 30, 22, 101, and 300 fundus images, respectively. Table 1 provides an overview of
the used datasets. All fundus images from the five datasets were resized to the resolution
of 224×224 pixels to meet the requirements of most pre-trained deep learning backbones.
In addition to binary diagnostic labels indicating the presence or absence of glaucoma,
ORIGA and Drishti-GS were enriched with pixel-level annotations for anatomical structures
of the optic cup and disk while HRF, LES-AV, and FIVES contained delineations of blood
vessels. ORIGA, HRF, and LES-AV were used to develop glaucoma classifiers, conduct
model explanations, and validate the association between model focus area and domain
knowledge-based anatomical structures. Drishti-GS and FIVES were introduced as external
evaluation of model classification and CAM explanation. To maximize the utility of the
limited samples with pixel-level annotations of blood vessels, we implemented double cross-
validation in model development and internal evaluation. This involved initially dividing the
dataset into three non-overlapped subsets, followed by the allocation of training, validation,
and test datasets to each of these subsets. Ultimately, this process generated A3

3: 6 distinct
scenarios to comprehensively evaluate various glaucoma classifiers and the model focus areas
generated by different CAM methods (Burzykowski et al., 2023). Table 2 shows the concrete
details of the double cross-validation. For the external evaluation on Drishti-GS and FIVES,
we randomly divided the dataset into non-overlapping validation and test sets with a 50:50
ratio.

2.2. Deep learning-based glaucoma classification

We first give necessary notations to facilitate the downstream elaboration on classifier train-
ing and explanation of model decision logic in terms of focus area. For the glaucoma classifi-
cation task, we denote the training, validation, and test datasets as Dtrain, Dval, and Dtest,
respectively. Take the training dataset Dtrain as an example, each fundus image Itraini is
paired with image-level diagnostic label Y train

i and pixel-level annotation Atrain
i of either

optic cup and disk or blood vessels. Itraini designates a two-dimensional image with a width
of W0 and a height of H0 and pw,h(I

train
i ) denotes a pixel in Itraini whose coordinate of

width and height is (w, h). For the generation of labels, clinicians screened each Itraini and
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assigned the binary diagnostic label of Y train
i in which 1 stands for glaucoma. Additionally,

clinicians delineated the anatomical structure, Atrain
i , marking the pixels belonging to this

specific anatomical structure with 1. The glaucoma classifier is trained based on Itraini and
Y train
i , validated using Ivali and Y val

i , and tested by Itesti and Y test
i . After the model devel-

opment, Atest
i is adopted to quantify the association between clinical domain knowledge of

anatomical structures and the model decision logic in terms of the focus area.

Specifically, the training process of deep neural networks is to find a set of parameters
for a pre-defined architecture that minimizes the difference between model predictions and
ground truth labels in the training set. Formally, with the training dataset Dtrain, we aim to
optimize a deep learning model fθ parameterized by θ. Taking the input of Itraini , fθ outputs
fθ(I

train
i ) and the optimization target is to minimize the loss function l between fθ(I

train
i )

and sample labels Y train
i across all samples inDtrain. To facilitate fine-grained training of fθ,

the validation dataset Dval is applied to schedule the learning rate decay: If l(fθ(I
val
i ), Y val

i )
has not decreased for a pre-defined epoch number Nepoch, the learning rate of θ will be
decreased and the θ showing the best performance on l(θ;Dval) will be saved as the optimal
parameter θ∗. After the model training, we calculate the binarization threshold τ based on
the model’s optimal performance on Dval and then evaluate the classification performance
of the trained fθ∗ on the unseen test dataset Dtest. Various metrics are applied to quantify
the model performance by comparing the model prediction fθ∗(I

test
i ) and the ground truth

label Y test
i . In this study, we utilize seven common metrics for glaucoma classification

evaluation, including the area under the receiver operating characteristic curve (AUROC),
the area under the precision recall curve (AUPRC), accuracy, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV). Also, the standard error (SE)
is reported based on the bootstrapping of samples in the test dataset (Efron, 1987). Besides
the internal evaluation above, we introduce the external unseen validation set Dval

ext and test
set Dtest

ext for generalizability evaluation. Without fine-tuning, the developed model fθ∗ is
deployed on Dval

ext and Dtest
ext for binarization threshold determination and model performance

evaluation.

Considering the middle-scale characteristic of the used dataset, we developed glaucoma
classifiers using four lightweight deep neural networks (Yuan, 2024d; Yuan et al., 2025).
These classifiers encompass two CNN backbones: VGG (VGG-11) (Simonyan et al., 2015)
and ResNet (ResNet-18) (He et al., 2016), as well as two Transformer architectures: Vision
Transformer (DeiT-Tiny) (Dosovitskiy et al., 2021; Touvron et al., 2021) and Swin Trans-
former (Swin-Tiny) (Liu et al., 2021). For model training, we employed Stochastic Gradient
Descent (SGD) (Rumelhart et al., 1986) with a learning rate of 0.001, a momentum of 0.9,
and a decay of 0.9 with a patience parameter of 10. Each deep learning model underwent
training for 100 epochs with weighted samples (Zhao et al., 2021) across the six-fold cross-
validation scenarios mentioned above. We reported the model performance with SE on both
internal and external test datasets.

2.3. CAM explanation for deep learning classifiers

The developed model fθ∗ classifies an unseen image Itesti from the test dataset Dtest as
fθ∗(I

test
i ). To explain the model decision logic behind fθ∗(I

test
i ), the model focus area

R(Itesti ) in Itesti is extracted by various CAM methods to highlight the most important
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pixels (regions) towards the model final decision fθ∗(I
test
i ). CAM techniques calculate each

pixel’s importance towards fθ∗(I
test
i ) and E(w,h)(I

test
i ) denoted the importance of a pixel

with coordinate (w, h) in Itesti . We further outline the focus area R(Itesti ) consisting of the
most significant pixels by selecting the pixels with top 5% E(w,h)(I

test
i ).

In this study, we utilize five mainstream explanation techniques in the CAM family:
Grad-CAM (Selvaraju et al., 2017), XGrad-CAM (Fu et al., 2020), Score-CAM (Wang et al.,
2020), Eigen-CAM (Muhammad and Yeasin, 2020), and Layer-CAM (Jiang et al., 2021) to
generate the pixel-level importance E(w,h)(I

test
i ). The top 5% important pixels are extracted

to formulate the model focus area R(Itesti ). After that, we compare the percentages of
anatomical structures in the model focus area (R(Itesti )

⋂
Atest

i )/R(Itesti ) and the whole image
Atest

i /Itesti . Similar to the external classification evaluation, we also implement external
evaluation on model explanation using Dtest

ext . Apparently, if deep learning models allocate
no additional attention to anatomical structures compared with other regions, there would
be no significant difference between the percentage of anatomies in the model focus area
and the entire input image. However, if the model identifies glaucoma predominantly by
relying on evidence from anatomical structures, the first percentage would be significantly
higher than the second.

To establish a rigorous analysis of the relationship between model decision logic (focus
area) and medical domain knowledge (the optic cup, optic disk, and blood vessels), the
paired-sample t-test (Student, 1908) is employed to compare the percentages of anatomical
structures in the model focus area and the whole image. Besides, we compute both Pearson’s
(Pearson, 1920) and Spearman’s correlation coefficient (Fieller et al., 1957) to ascertain
whether there exists a correlation between the model’s classification performance of AUROC
and the proportion of anatomical areas within its focus region. A correlation coefficient
larger than 0 implies a positive correlation between the two variables. For reproduction,
code and dataset are publicly available at GitHub1.

3. Results

First, we quantitatively demonstrated the internal classification performance of various
models on glaucoma diagnosis in Table 3 and their external performance on Grishti-GS and
FIVES in Table 4 and Table 5, respectively. In both internal and external evaluations, VGG-
11 consistently outperformed other models, achieving the highest classification performance
across all metrics, with the exception of sensitivity in the external Drishti-GS dataset.
ResNet-18, DeiT-Tiny, and Swin-Tiny also delivered a commendable performance in internal
and external glaucoma classification, demonstrating the feasibility of downstream analysis
of the models’ decision logic.

Table 6, 7, 8, and 9 presents the CAM explanation performance of different deep learn-
ing models on the internal test dataset and their external explanation performance on
Drishti-GS and FIVES was provided in Table 10, 11, 12, and 13, and Table 14, 15, 16, and
17, respectively. From the P values of paired-sample t-tests, we observed that anatomical
structures of the optic cup, optic disk, and blood vessels occupied statistically significant
percentages in the focus regions of various glaucoma classifiers. Further, Table 18 summa-
rizes Pearson’s and Spearman’s correlation tests between the model classification perfor-
mance of AUROC and the anatomies’ proportion in the focus area. Notably, there exists
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a statistically significantly positive relationship between model predictive performance and
their focus on anatomical structures, which aligns with the clinician’s diagnostic logic of
glaucoma (Liao et al., 2019).

To provide a comparative visualization of anatomies and model decision logic, Figure 1
portrays a comparative visualization of anatomies and VGG-11 decision logic, and Figure
2 and 3 shows the corresponding results in the external test sets. The images from the first
to the fifth column are original images, ground-truth anatomies, and focus area by Grad-
CAM, XGrad-CAM, Score-CAM, Eigen-CAM, and Layer-CAM, respectively. The striking
resemblance between the model’s focus areas and the anatomical regions underscores a
compelling point: despite being trained with solely image-level labels, deep neural networks
rely on reasonable evidence to classify glaucoma, akin to the decision-making process of
human clinicians (Liao et al., 2019). This observation also demonstrated the practicability
of knowledge distillation by data-driven deep neural networks (Qin et al., 2021; Yuan et al.,
2024b,a).

4. Discussion

In this study, we developed four deep neural networks based on both CNN and Vision
Transformer architectures for glaucoma classification. We compared model focus regions
generated by different CAM methods and anatomical structures annotated by clinicians to
shed light on the extent of alignment between the decision-making logic of black-box deep
learning models and the clinical domain knowledge that human experts exploit to make
diagnoses. Based on the paired-sample t-test, we showed that the data-driven deep neural
networks consistently paid more attention to the anatomical structures of the optic cup,
optic disk, and blood vessels. This empirical evidence underscores the convergence of deci-
sion logic between our models and human experts in the context of glaucoma classification.
Further, we implemented Pearson’s and Spearman’s correlation analysis and revealed the
positive relationship between the model’s attentiveness to anatomical structures in the focus
area and the model’s predictive performance.

In our experiments, VGG-11 outperformed both ResNet-18 and Vision Transformer-
based DeiT-Tiny and Swin-Tiny with more sophisticated structure design. Such a phe-
nomenon of ”The deeper is not the better” has been reported in eye cancer classification
(Santos-Bustos et al., 2022) and pneumonia detection (Ikechukwu et al., 2021) and is ver-
ified by our experimental results on glaucoma classification. We demonstrated that the
conventional CNN model of VGG-11 is still capable even achieving the best performance
in handling datasets with middle scale and resolution. In terms of AUROC and AUPRC,
VGG-11 was 17.9% and 21.0% higher than ResNet-18, 9.2% and 15.3% higher than DeiT-
Tiny, and 9.2% and 16.6% higher than Swin-Tiny in the internal test set and a similar sub-
stantial superiority can be observed in the external tests sets. Additionally, VGG-11 holds
relatively lower complexity than Vision Transformers. The inherent preservation of spatial
information in VGG-11 leads to its focus region by various CAM methods overlaps more
with the anatomies than the Vision Transformers, making it better aligned with clinical
knowledge and becoming more trustworthy from the perspective of healthcare professionals
(Yuan et al., 2023, 2024c).
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To uncover the model inference logic, we chose various CAM methods to pinpoint the
focus regions toward model final decisions. This approach has been employed by prior
researchers to segment pixel-level lesion areas based on image-level labels (Yuan et al.,
2023; Zhang et al., 2020, 2021; Chan et al., 2021). However, most of these studies assessed
whether the model focused on ROI by calculating overlap metrics such as Intersection over
Union (IoU). In this study, we introduced another approach that conducts statistical tests
on whether there is a significant difference between the percentage of ROI in the model
focus area and the percentage of ROI in the entire image input. Therefore, if the first term
is statistically significantly higher than the second term, it is ascertained that the model
exhibits a preference for ROI over clinically irrelevant regions. In our case, we showed
that the convergence of decision logic in various deep learning models and human clinicians
(Yuan et al., 2021), which was further supported by the positive relationship between model
predictive performance and the percentage of anatomies in the model focus area.

Based on this work, there are several limitations to be addressed in the future. First, the
explanation methods utilized in this study were confined to the CAM family. Subsequent
research should consider the incorporation of additional deep learning explanation methods
such as Integrated Gradients (Sundararajan et al., 2017) to offer a more comprehensive
analysis. Second, this work primarily focuses on explaining the existing fundus images.
In future research, we intend to explore an alternative approach that uses image genera-
tion methods to manipulate anatomical structures (White et al., 2023; Wu et al., 2022)
and agentic language models to explicitly output decision logic by human language (Yuan,
2025b,a). This approach will allow us to gain deeper insights into the behavior and facilitate
users’ comprehension of the underlying decision logic of deep neural networks. Third, the
statistical tests compared model focus area with anatomies and future work will consider
additional clinical evidence such as bleeding and notch (Liao et al., 2019). Furthermore, our
observations revealed a positive correlation between a model’s predictive performance and
the percentage of its focus region over anatomical structures. This observation suggests a
potential avenue for enhancing model performance, wherein the quantitative percentage of
anatomies could be utilized as the rewards under the framework of reinforcement learning
(Ellis et al., 2020; Kang et al., 2025). Finally, this research exclusively explored glaucoma
diagnosis and we plan to evaluate the association between model focus area and anatomical
structure in a broader spectrum of ophthalmological tasks such as diabetic retinopathy,
retinal vein occlusion, and fundus tumors (Cen et al., 2021).

5. Conclusion

The black-box nature of deep learning has long hindered its application in healthcare. In this
study, we validated the statistically significant alignment of clinical domain knowledge and
the decision-making logic of deep neural networks through several rigorous statistical tests.
We hope that this research mitigates domain experts’ concerns regarding the trustworthiness
of deep learning in glaucoma diagnosis.
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Figure 1: Visualization comparison of anatomical structures and VGG-11 explanations by
different CAM methods on the internal test dataset
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Figure 2: Visualization comparison of anatomical structures and VGG-11 explanations by
different CAM methods on the external test dataset of Drishti-GS

Figure 3: Visualization comparison of anatomical structures and VGG-11 explanations by
different CAM methods on the external test dataset of FIVES
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