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1 | Computational Resource Limitations

Deep learning (DL) has been identified as an indispensable
backbone in health data science [1], driven by exponential
growth in the scale of medical data and its remarkable modeling
capability powered by increasingly complex architectures with
parameter counts now surpassing hundreds of billions [2].
Supercomputing centers have been established in industry set-
tings, but restrictions on sharing private patient data with
external entities persist [3]. As a result, academic institutions
and hospitals remain primary venues for developing DL models
in healthcare. However, the computational constraints faced by
many healthcare providers, who may lack access to high‐
performance computing resources, must be considered. From
the perspective of the DL lifecycle, we identify three key factors
that contribute to computational resource demands: data,
model, and computing. Accordingly, we illustrate three repre-
sentative strategies in Figure 1: informative data subset selec-
tion, model compression, and low‐precision computation that
offer actionable solutions for healthcare providers to mitigate
computational constraints when leveraging DL models in
resource‐limited settings.

2 | Data Strategies

Data is the driving force behind the success of DL models.
However, the rapid increase in both the dimensionality of

individual samples and the overall size of datasets has made
model development on entire datasets increasingly cost‐
prohibitive for hospitals and medical research institutes. A
practical solution to this challenge is informative data subset
selection, which aims to recognize pragmatic samples that
would contribute to model training, thereby reducing compu-
tational costs and mitigating predictive errors caused by noisy or
irrelevant data [4].

Sample selection can occur either before or during model
training. Prior to training, a common approach involves
representativeness‐based selection, where sample representa-
tions are first obtained, followed by clustering to identify a core
set of data points closest to the cluster centers [5]. During
training, Katharopoulos and Fleuret [6] introduced a theory that
suggests that many samples become redundant after a few
epochs and can be excluded from subsequent training. Sample
informativeness is measured by its contribution to the variance
reduction in model parameter updates, with large batches of
data being replaced by smaller subsets that maximize variance
reduction. Compared with the default solution, their proposed
strategy reduced the test error by 8.0% and 5.0% on CIFAR‐10
and CIFAR‐100 image classification tasks, respectively. Cole-
man et al. [7] expanded on these ideas by introducing a proxy
model with fewer parameters, derived from the original back-
bone model, to further accelerate the calculation of sample
informativeness while optimizing computational efficiency. The
proposed method successfully removed 20.0% of the dataset,

Abbreviation: DL, deep learning.
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with only a 0.1% increase in the top 1 error on the Amazon
review polarity benchmark.

Moreover, unlike traditional DL approaches that require large
datasets for training, recent advancements in foundation models
across various medical domains, such as radiology [8], pathol-
ogy [9], and ophthalmology [10], have demonstrated the capa-
bility to address tasks effectively with limited fine‐tuning
samples. This efficiency stems from their ability to leverage
generalizable knowledge acquired from extensive external data
on related tasks and further mitigates the potential model
convergence issues caused by data subset selection [11].

3 | Model Strategies

The victory of DL originates not only from large‐scale datasets
but also from model parameter scalability and the correspond-
ing capability to fit complex decision functions [12]. In the
intervening time, optimizing these large‐scale parameters im-
poses significant requirements on computational resources.
Model compression aims to identify compact architectures with
minimal parameters to reduce computational demands while
preserving performance. Among common techniques, param-
eter pruning and low‐rank factorization have been suggested
because they can be easily deployed in both the training and
inference stages [13]. Additionally, they are more efficient than
techniques that require additional training, particularly in
resource‐constrained settings.

Parameter pruning eliminates parameters that are not impor-
tant to the target task, whereas low‐rank factorization leverages
matrix decomposition to approximate indispensable parameters
[14, 15]. For parameter pruning, Srinivas and Babu [16] pro-
posed a seminal approach for neuron elimination. Their method
calculates the saliency of each neuron and iteratively removes
those with the lowest saliency. On the MNIST dataset, a LeNet‐
like architecture with 83.5% parameter compression achieved an
accuracy of 98.4%, thereby reflecting a decrease of < 1.0%
compared with the full‐parameter model, which attained 99.1%
accuracy. This approach can be applied to any pre‐trained
model without additional training, aligning with our goal of
reducing computational resource consumption.

By contrast, low‐rank factorization targets the matrix multipli-
cations that are inherent in DL, which account for a substantial
portion of the computational load [17]. This approach replaces
the original matrix operations with decomposed matrix multi-
plications, thereby reducing calculation redundancy. For
instance, Denton et al. [18] used singular value decomposition
to approximate convolutional filter matrices with low‐rank
matrices, significantly reducing the number of parameters.
Validated on ImageNet classification, their method achieved a
reduction in weights ranging from 2.4 to 13.4 times, with a max
error increase of 0.9%. However, for applications with sufficient
computational resources, where the primary goal is to reduce
inference latency, alternative methods such as knowledge
distillation should also be considered [19]. For readers inter-
ested in a detailed exploration of model compression tech-
niques, we recommend referring to this survey [20].

FIGURE 1 | Representative techniques toward efficient deep learning for healthcare.
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4 | Computing Strategies

In addition to data volumes and model parameters, the resource
demands of hardware, storage infrastructure, and data trans-
mission networks are significantly influenced by the computing
approach adopted throughout the DL lifecycle [21]. Low‐
precision computing is a technique that uses fewer than 32‐bit
floating‐point numbers, the standard for processing deep neu-
ral networks, to represent individual parameters, activations,
and gradients [22]. This approach accelerates computations and
reduces memory usage, thereby lowering the overall computa-
tional resource demands [23].

Low‐precision computation is particularly useful during model
inference [24]. Considering high‐dimensional medical image
data as an example, multiple images can be spliced into low‐
precision batches for processing by a low‐precision model
[24]. Then batch prediction results are separated to retrieve the
output for each individual image [24]. Compared with the
inference stage, using low‐precision computation during
training often leads to convergence‐relevant issues, such as
gradient divergence, vanishing gradients, or entrapment in local
minima [25]. Mixed‐precision computation has gained promi-
nence as an effective strategy to address these challenges by
combining low precision for less sensitive operations with suf-
ficient numerical resolution for critical computations. Hayford
et al. [25] demonstrated a practical application of mixed‐
precision training for DL models. In their experiments, model
parameters were stored in full‐precision, whereas loss and
gradient parameters were computed and stored in low‐
precision. When model parameters were updated, these low‐
precision values were temporarily converted back to full‐
precision. Furthermore, loss scaling was used to shift the up-
date parameters from a wide range in low‐precision to a nar-
rower range in full‐precision because most activated values
during training were typically < 1. The experimental results
showed that mixed‐precision training not only led to a relative
error increase of < 1.0% compared with full‐precision training
but also significantly reduced computational resource con-
sumption, with a reduction of training time ranging from 10.6%
to 43.1%.

The trade‐off between achieving model performance and
compression cannot be fully addressed; however, various stra-
tegies have been proposed to mitigate this issue. For example,
progressively decreasing the bitwidth achieves comparable or
superior performance while substantially reducing the memory
requirements for model parameters, compared with uniform
bitwidth reduction [26]. For readers seeking an in‐depth un-
derstanding of mixed‐precision training and inference tech-
niques, we recommend consulting this review [27].

5 | Toward Efficient Deep Learning

In healthcare scenarios, researchers should strike a balance
between computational efficiency and the rigorous demand for
accuracy and reliability: Overlooking computational efficiency
can lead to impractical systems that are resource‐intensive,
whereas sacrificing accuracy compromises patient safety and

clinical utility. This commentary elucidates the three primary
factors of data, models, and computing that influence compu-
tational requirements when using DL in healthcare and pre-
sents representative solutions to reduce computational resource
burdens.

Regarding future efficient DL, we recommend that researchers
conduct rigorous evaluations of models, particularly compressed
or low‐precision models, in both out‐of‐sample and out‐of‐time
scenarios. Such assessments should use diverse metrics tailored
to specific objectives, including sensitivity and specificity, to
accurately identify patients with and without a given disease
[28, 29]. For high‐level screening, such as infectious disease
detection in a large population, models with high sensitivity are
prioritized to minimize false negatives and mitigate the risk of
disease spread [30]. By contrast, for critical diagnoses, such as
confirming cancer prior to radiotherapy, models with high
specificity are crucial to prevent unnecessary interventions,
reduce patient anxiety, and avoid substantial costs [31]. If the
performance of efficient DL solutions is validated to meet the
real‐world deployment standard, researchers are then encour-
aged to focus on computational feasibility, energy efficiency,
and environmental sustainability [32, 33].
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